The Pacific decadal and interdecadal oscillation (PDO) has been extensively explored in recent decades because of its profound impact on global climate systems. It is a long-lived ENSO-like pattern of Pacific climate ...The Pacific decadal and interdecadal oscillation (PDO) has been extensively explored in recent decades because of its profound impact on global climate systems. It is a long-lived ENSO-like pattern of Pacific climate variability with a period of 10-30 years. The general picture is that the anomalously warm (cool) SSTs in the central North Pacific are always accompanied by the anomalously cool (warm) SSTs along the west coast of America and in the central east tropical Pacific with comparable amplitude. In general, there are two classes of opinions on the origin of this low-frequency climate variability, one thinking that it results from deterministically coupled modes of the Pacific ocean-atmosphere system, and the other, from stochastic atmospheric forcing. The deterministic origin emphasizes that the internal physical processes in an air-sea system can provide a positive feedback mechanism to amplify an initial perturbation, and a negative feedback mechanism to reverse the phase of oscillation. The dynamic evolution of ocean circulation determines the timescale of the oscillation. The stochastic origin, however, emphasizes that because the atmospheric activities can be thought as having no preferred timescale and are associated with an essentially white noise spectrum, tne ocean response can manifest a red peak in a certain low frequency range with a decadal to interdecadal timescale. In this paper, the authors try to systematically understand the state of the art of observational, theoretical and numerical studies on the PDO and hope to provide a useful background reference for current research.展开更多
The recently experienced hype concerning the so-called “4<sup>th</sup> Industrial Revolution” of production systems has prompted several papers of various subtopics regarding Cyber-Phdysical Production S...The recently experienced hype concerning the so-called “4<sup>th</sup> Industrial Revolution” of production systems has prompted several papers of various subtopics regarding Cyber-Phdysical Production Systems (CPPS). However, important aspects such as the modelling of CPPS to understand the theory regarding the performance of highly non-ergodic and non-deterministic flexible manufacturing systems in terms of Exit Rate (ER), Manufacturing Lead Time (MLT), and On-Time Delivery (OTD) have not yet been examined systematically and even less modeled analytically. To develop the topic, in this paper, the prerequisites for modelling such systems are defined in order to be able to derive an explicit and dedicated production mathematics-based understanding of CPPS and its dynamics: switching from explorative simulation to rational modelling of the manufacturing “physics” led to an own and specific manufacturing theory. The findings have led to enouncing, among others, the Theorem of Non-Ergodicity as well as the Batch Cycle Time Deviation Function giving important insights to model digital twin-based CPPS for complying with the mandatory OTD.展开更多
This paper presents a new logical mechanism called as Cluster Based Hierarchical Routing (CBHR) to improve the efficiency of NoC. This algorithm comprises the following steps: 1) the network is segmented logically int...This paper presents a new logical mechanism called as Cluster Based Hierarchical Routing (CBHR) to improve the efficiency of NoC. This algorithm comprises the following steps: 1) the network is segmented logically into clusters with same size or different sizes;2) algorithms are assigned for internal and global routing;3) routers working functions are modified logically to support local and global communication. The experiments have conducted for CBHR algorithm for two dimensional mesh and torus architectures. The performance of this mechanism is analyzed and compared with other deterministic and adaptive routing algorithms in terms of energy, throughput with different packet injection ratios.展开更多
A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the...A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.展开更多
The first case of a new food allergy, an anaphylactic reaction to Manioc (Manihot esculenta or Manihot utilissima), also called cassava and tapioca, was described in 2001. Cassava is a tuber widely consumed in Brazil,...The first case of a new food allergy, an anaphylactic reaction to Manioc (Manihot esculenta or Manihot utilissima), also called cassava and tapioca, was described in 2001. Cassava is a tuber widely consumed in Brazil, which has been consumed by native Indians, i.e., more than 500 years ago, so why are the first cases just emerging now? We address this question by developing a mathematical model considering the fact that proton pump inhibitors (PPIs) for digestive disorders maintain the cassava allergen intact due to the elevation in pH of gastric juice, thereby facilitating its presentation to the immune system. The model assumed the mass action law including saturation to describe the recruitment of PPIs users, and Hill function to describe the sensitization of immune system by the allergens and the acquisition of full food allergy. Analytical results were obtained from the model, and numerical simulations were done. The estimated period of time elapsed since the introduction of antiacids before the diagnosis of food allergy was 15 years. The food allergy may become a public health problem, if PPIs are being used indiscriminately and irregularly. The results obtained from the analysis of the model suggest that the use of nonprescription antiacids, like PPIs, may be recommended or approved by the physician in order to avoid the rising of food allergy.展开更多
The laws of functioning of discrete deterministic dynamical systems are investigated,presented in the form of automata models defined by geometric images.Due to the use of the apparatus of geometric images of automata...The laws of functioning of discrete deterministic dynamical systems are investigated,presented in the form of automata models defined by geometric images.Due to the use of the apparatus of geometric images of automata,developed by V.A.Tverdokhlebov,the analysis of automata models is carried out on the basis of the analysis of mathematical structures represented by geometric curves and numerical sequences.The purpose of present research is to further develop the mathematical apparatus of geometric images of automaton models of systems,including the development of new methods for recognizing automata by their geometric images,given both geometric curves and numerical sequences.展开更多
We are constrained by widespread cancerous diseases to improve treatment methods which save patients and provide better living conditions during and after the treatment period.Because of the complexity of the treatmen...We are constrained by widespread cancerous diseases to improve treatment methods which save patients and provide better living conditions during and after the treatment period.Because of the complexity of the treatment process,mathematical models need to be used in order to have a better understanding of the process.However,deriving an adequate complex model that can capture the disease pattern which could be confirmed by simulations and experiments has its own barriers.In this paper,a new mathematical model is developed concerning immune system effect on cancer.The model is introduced using nonlinear ordinary differential equations.Also,the qualitative behavior of the proposed system is studied in order to examine the extent of the model with respect to the nature of tumor evolution.Thus,number and status of equilibria points in line with the existence of limit cycles are obtained for sub-systems and the whole system.Meanwhile,possible bifurcations are mentioned,and the consequent evolutions are described.It is shown that the model conforms well to natural possibilities,cancer growth or remission.Thus,the model would be fit for further studies for prediction and contemplating treatment method,especially for immune stimulating drugs and immunotherapy.展开更多
基金This paper is supported by the National Natural Science Foundation of China under Grant No. 40005006, the Knowledge Innovation Key Project of the Chinese Academy of Sciences in the Resource Environment Field (No. KZCX2-203), and the National Key Programm
文摘The Pacific decadal and interdecadal oscillation (PDO) has been extensively explored in recent decades because of its profound impact on global climate systems. It is a long-lived ENSO-like pattern of Pacific climate variability with a period of 10-30 years. The general picture is that the anomalously warm (cool) SSTs in the central North Pacific are always accompanied by the anomalously cool (warm) SSTs along the west coast of America and in the central east tropical Pacific with comparable amplitude. In general, there are two classes of opinions on the origin of this low-frequency climate variability, one thinking that it results from deterministically coupled modes of the Pacific ocean-atmosphere system, and the other, from stochastic atmospheric forcing. The deterministic origin emphasizes that the internal physical processes in an air-sea system can provide a positive feedback mechanism to amplify an initial perturbation, and a negative feedback mechanism to reverse the phase of oscillation. The dynamic evolution of ocean circulation determines the timescale of the oscillation. The stochastic origin, however, emphasizes that because the atmospheric activities can be thought as having no preferred timescale and are associated with an essentially white noise spectrum, tne ocean response can manifest a red peak in a certain low frequency range with a decadal to interdecadal timescale. In this paper, the authors try to systematically understand the state of the art of observational, theoretical and numerical studies on the PDO and hope to provide a useful background reference for current research.
文摘The recently experienced hype concerning the so-called “4<sup>th</sup> Industrial Revolution” of production systems has prompted several papers of various subtopics regarding Cyber-Phdysical Production Systems (CPPS). However, important aspects such as the modelling of CPPS to understand the theory regarding the performance of highly non-ergodic and non-deterministic flexible manufacturing systems in terms of Exit Rate (ER), Manufacturing Lead Time (MLT), and On-Time Delivery (OTD) have not yet been examined systematically and even less modeled analytically. To develop the topic, in this paper, the prerequisites for modelling such systems are defined in order to be able to derive an explicit and dedicated production mathematics-based understanding of CPPS and its dynamics: switching from explorative simulation to rational modelling of the manufacturing “physics” led to an own and specific manufacturing theory. The findings have led to enouncing, among others, the Theorem of Non-Ergodicity as well as the Batch Cycle Time Deviation Function giving important insights to model digital twin-based CPPS for complying with the mandatory OTD.
文摘This paper presents a new logical mechanism called as Cluster Based Hierarchical Routing (CBHR) to improve the efficiency of NoC. This algorithm comprises the following steps: 1) the network is segmented logically into clusters with same size or different sizes;2) algorithms are assigned for internal and global routing;3) routers working functions are modified logically to support local and global communication. The experiments have conducted for CBHR algorithm for two dimensional mesh and torus architectures. The performance of this mechanism is analyzed and compared with other deterministic and adaptive routing algorithms in terms of energy, throughput with different packet injection ratios.
基金Project(2008BA00400)supported by the Foundation of Department of Science and Technology of Jiangxi Province,China
文摘A novel immune-swarm intelligence (ISI) based algorithm for solving the deterministic coverage problems of wireless sensor networks was presented.It makes full use of information sharing and retains diversity from the principle of particle swarm optimization (PSO) and artificial immune system (AIS).The algorithm was analyzed in detail and proper swarm size,evolving generations,gene-exchange individual order,and gene-exchange proportion in molecule were obtained for better algorithm performances.According to the test results,the appropriate parameters are about 50 swarm individuals,over 3 000 evolving generations,20%-25% gene-exchange proportion in molecule with gene-exchange taking place between better fitness affinity individuals.The algorithm is practical and effective in maximizing the coverage probability with given number of sensors and minimizing sensor numbers with required coverage probability in sensor placement.It can reach a better result quickly,especially with the proper calculation parameters.
文摘The first case of a new food allergy, an anaphylactic reaction to Manioc (Manihot esculenta or Manihot utilissima), also called cassava and tapioca, was described in 2001. Cassava is a tuber widely consumed in Brazil, which has been consumed by native Indians, i.e., more than 500 years ago, so why are the first cases just emerging now? We address this question by developing a mathematical model considering the fact that proton pump inhibitors (PPIs) for digestive disorders maintain the cassava allergen intact due to the elevation in pH of gastric juice, thereby facilitating its presentation to the immune system. The model assumed the mass action law including saturation to describe the recruitment of PPIs users, and Hill function to describe the sensitization of immune system by the allergens and the acquisition of full food allergy. Analytical results were obtained from the model, and numerical simulations were done. The estimated period of time elapsed since the introduction of antiacids before the diagnosis of food allergy was 15 years. The food allergy may become a public health problem, if PPIs are being used indiscriminately and irregularly. The results obtained from the analysis of the model suggest that the use of nonprescription antiacids, like PPIs, may be recommended or approved by the physician in order to avoid the rising of food allergy.
文摘The laws of functioning of discrete deterministic dynamical systems are investigated,presented in the form of automata models defined by geometric images.Due to the use of the apparatus of geometric images of automata,developed by V.A.Tverdokhlebov,the analysis of automata models is carried out on the basis of the analysis of mathematical structures represented by geometric curves and numerical sequences.The purpose of present research is to further develop the mathematical apparatus of geometric images of automaton models of systems,including the development of new methods for recognizing automata by their geometric images,given both geometric curves and numerical sequences.
文摘We are constrained by widespread cancerous diseases to improve treatment methods which save patients and provide better living conditions during and after the treatment period.Because of the complexity of the treatment process,mathematical models need to be used in order to have a better understanding of the process.However,deriving an adequate complex model that can capture the disease pattern which could be confirmed by simulations and experiments has its own barriers.In this paper,a new mathematical model is developed concerning immune system effect on cancer.The model is introduced using nonlinear ordinary differential equations.Also,the qualitative behavior of the proposed system is studied in order to examine the extent of the model with respect to the nature of tumor evolution.Thus,number and status of equilibria points in line with the existence of limit cycles are obtained for sub-systems and the whole system.Meanwhile,possible bifurcations are mentioned,and the consequent evolutions are described.It is shown that the model conforms well to natural possibilities,cancer growth or remission.Thus,the model would be fit for further studies for prediction and contemplating treatment method,especially for immune stimulating drugs and immunotherapy.