Desulfurization performance with low binary basicity refining slag in 72 grade tire cord steel was calculated using FactSage and it is found that sulfur content in steel decreases with the increase of basicity of slag...Desulfurization performance with low binary basicity refining slag in 72 grade tire cord steel was calculated using FactSage and it is found that sulfur content in steel decreases with the increase of basicity of slag, MgO content in slag and slag/steel ratio while sulfur partition ratio between slag and steel increases gradually with the increase of basicity of slag as well as MgO content. Experiments were carried out and the results are of great agreements with theoretical calculation. Then industrial application tests were performed in a domestic plant and good results were achieved. Sulfur content in steel decreases gradually during refining process, as a result, sulfur content in the billets is controlled in the range of 0.007 1%-0.008 1%. Sulfur content in steel refined with slag basicity of 1.21 is lower than that of 1.02, while the plasticity of oxide compound inclusions is a little better controlled in low basicity heats. Using refining slag with basicity of 1.0-1.2 and MgO content of 5%-10% and reducing the slag takeover of LD are favorable for improving the desulfurization performance and the plasticity of inclusions during the industrial production.展开更多
The crystallization behavior of desulfurization product is directly related to its high-temperature-resistant ability.Effects of the additive on the sulfur-fixation efficiency of the Ba-sulfur-fixation agent and also ...The crystallization behavior of desulfurization product is directly related to its high-temperature-resistant ability.Effects of the additive on the sulfur-fixation efficiency of the Ba-sulfur-fixation agent and also on the crystallization behavior of the sulfur-fixation product were studied when CaCO 3 and BaCO 3 were used as the desulfurization agent and MgO and SrCO 3 used as the assistant sulfur-fixation agent. The result shows that increase of sulfur-fixation capability for the additive is not owe to their directly react to form sulfate or interact with CaCO 3 and BaCO 3 to form composite mineral heat-resistant in high temperature, but owe to their activation to sulfur-fixation reaction of the sulfur-fixation agent.展开更多
基金Item Sponsored by National Key Basic Research and Development Program of China(2010CB30806)Central South University Postdoctoral Funded Project of China(120961)
文摘Desulfurization performance with low binary basicity refining slag in 72 grade tire cord steel was calculated using FactSage and it is found that sulfur content in steel decreases with the increase of basicity of slag, MgO content in slag and slag/steel ratio while sulfur partition ratio between slag and steel increases gradually with the increase of basicity of slag as well as MgO content. Experiments were carried out and the results are of great agreements with theoretical calculation. Then industrial application tests were performed in a domestic plant and good results were achieved. Sulfur content in steel decreases gradually during refining process, as a result, sulfur content in the billets is controlled in the range of 0.007 1%-0.008 1%. Sulfur content in steel refined with slag basicity of 1.21 is lower than that of 1.02, while the plasticity of oxide compound inclusions is a little better controlled in low basicity heats. Using refining slag with basicity of 1.0-1.2 and MgO content of 5%-10% and reducing the slag takeover of LD are favorable for improving the desulfurization performance and the plasticity of inclusions during the industrial production.
文摘The crystallization behavior of desulfurization product is directly related to its high-temperature-resistant ability.Effects of the additive on the sulfur-fixation efficiency of the Ba-sulfur-fixation agent and also on the crystallization behavior of the sulfur-fixation product were studied when CaCO 3 and BaCO 3 were used as the desulfurization agent and MgO and SrCO 3 used as the assistant sulfur-fixation agent. The result shows that increase of sulfur-fixation capability for the additive is not owe to their directly react to form sulfate or interact with CaCO 3 and BaCO 3 to form composite mineral heat-resistant in high temperature, but owe to their activation to sulfur-fixation reaction of the sulfur-fixation agent.