在太阳能吸附制冷循环解吸过程中传质性能受到非稳定热源温度的限制,而压力调节可作为强化传质的有效补偿手段。通过构建活性炭-甲醇工质对的恒温解吸理论模型给出了解吸率、解吸速率的表达式,对变压强化传质效果进行计算,揭示了温度与...在太阳能吸附制冷循环解吸过程中传质性能受到非稳定热源温度的限制,而压力调节可作为强化传质的有效补偿手段。通过构建活性炭-甲醇工质对的恒温解吸理论模型给出了解吸率、解吸速率的表达式,对变压强化传质效果进行计算,揭示了温度与压力变化对解吸率的影响规律。计算结果显示系统压力降低10 k Pa可等效于热源温度升高了6~8℃。搭建了以活性炭-甲醇为工质对的吸附单元管吸附制冷平台,实验结果显示当解吸温度分别为90、100和110℃时,系统压力降低14 k Pa后,解吸率分别提高了20.5%、15.1%和12.1%,平均解吸速率分别提高了49.3%、44.6%和37.1%,与理论计算吻合较好。得出了温度与压力对解吸性能影响的耦合关系,并对实际太阳能吸附制冷系统变压解吸方法给出建议。展开更多
Thermal analysis was employed to investigate the desorption temperatures(Td) of alcohols on the surface of α-Al2O3 and silicion gel in this paper.The quantative relationship between Td and boiling point(...Thermal analysis was employed to investigate the desorption temperatures(Td) of alcohols on the surface of α-Al2O3 and silicion gel in this paper.The quantative relationship between Td and boiling point(Tb),polarizability effect index(PEI)was:Td(℃)=2111+06185Tb(℃)-22868PEI (on α-Al2O3) with a correlation coefficient of 09986 and a standard deviation of 13246,Td(℃)=50585+04673Tb(℃)-29195PEI (on silica gel) with a correlation coefficient of 09937 and a standard deviation of 21877.展开更多
文摘在太阳能吸附制冷循环解吸过程中传质性能受到非稳定热源温度的限制,而压力调节可作为强化传质的有效补偿手段。通过构建活性炭-甲醇工质对的恒温解吸理论模型给出了解吸率、解吸速率的表达式,对变压强化传质效果进行计算,揭示了温度与压力变化对解吸率的影响规律。计算结果显示系统压力降低10 k Pa可等效于热源温度升高了6~8℃。搭建了以活性炭-甲醇为工质对的吸附单元管吸附制冷平台,实验结果显示当解吸温度分别为90、100和110℃时,系统压力降低14 k Pa后,解吸率分别提高了20.5%、15.1%和12.1%,平均解吸速率分别提高了49.3%、44.6%和37.1%,与理论计算吻合较好。得出了温度与压力对解吸性能影响的耦合关系,并对实际太阳能吸附制冷系统变压解吸方法给出建议。
文摘Thermal analysis was employed to investigate the desorption temperatures(Td) of alcohols on the surface of α-Al2O3 and silicion gel in this paper.The quantative relationship between Td and boiling point(Tb),polarizability effect index(PEI)was:Td(℃)=2111+06185Tb(℃)-22868PEI (on α-Al2O3) with a correlation coefficient of 09986 and a standard deviation of 13246,Td(℃)=50585+04673Tb(℃)-29195PEI (on silica gel) with a correlation coefficient of 09937 and a standard deviation of 21877.