As-cast and rapidly solidified Ti_(23)V_(40)Mn_(37)alloy doped with Zr_(7)Ni_(10) was synthesized by arc melting and melt-spinning.The microstructure,activation property,hydrogen absorption kinetics,and hydrogen absor...As-cast and rapidly solidified Ti_(23)V_(40)Mn_(37)alloy doped with Zr_(7)Ni_(10) was synthesized by arc melting and melt-spinning.The microstructure,activation property,hydrogen absorption kinetics,and hydrogen absorption/desorption thermodynamics were investigated to evaluate a comprehensive hydrogen storage property of the alloys.Both preparation methods had a negligible effect on the lattice parameter of BCC and C14 Laves phases in the alloys.The alloy prepared by melt-spinning showed an increased proportion of BCC phase,larger hydrogen absorption capacity,faster hydrogen absorption rate,and higher hydrogen absorption/desorption platform pressure.The dehydriding enthalpy and endothermic peak temperature of the rapidly solidified alloy were 33.55±2.14 KJ/mol H_(2)and 526.2 K,respectively,which are smaller than those of the as-cast alloy.It indicates the decreased hydride stability and improved hydrogen desorption property.By contrast with the as-cast alloy,the rapidly solidified alloy showed a preferable comprehensive hydrogen storage property.展开更多
Moisture sorption isotherms and thermodynamic properties of Camellia oleifera seeds as influenced by oil content were investigated.Moisture desorption and adsorption isotherms of Camellia oleifera seeds,kernels and sh...Moisture sorption isotherms and thermodynamic properties of Camellia oleifera seeds as influenced by oil content were investigated.Moisture desorption and adsorption isotherms of Camellia oleifera seeds,kernels and shells from three varieties were determined using constant temperature and humidity chamber method at different temperatures(10°C,25°C,and 40°C)with water activity ranging from 0.20 to 0.90.Six selected mathematic models were employed to fit the experimental data.The Peleg model gave the best results for both seeds and kernels and Langmuir model was the best for shells.The difference of equilibrium moisture contents at the same water activities during desorption and adsorption indicated the occurrence of hysteresis of adsorption processes and the equilibrium moisture contents tended to decrease with the increasing oil content and temperature.The binding energy and average capacity per unit mass decreased with increasing temperature and oil content.The relationships between water activity and the logarithm of sorption activity showed the capillary porous body characteristics of the seeds.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.51674201)the Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-906).
文摘As-cast and rapidly solidified Ti_(23)V_(40)Mn_(37)alloy doped with Zr_(7)Ni_(10) was synthesized by arc melting and melt-spinning.The microstructure,activation property,hydrogen absorption kinetics,and hydrogen absorption/desorption thermodynamics were investigated to evaluate a comprehensive hydrogen storage property of the alloys.Both preparation methods had a negligible effect on the lattice parameter of BCC and C14 Laves phases in the alloys.The alloy prepared by melt-spinning showed an increased proportion of BCC phase,larger hydrogen absorption capacity,faster hydrogen absorption rate,and higher hydrogen absorption/desorption platform pressure.The dehydriding enthalpy and endothermic peak temperature of the rapidly solidified alloy were 33.55±2.14 KJ/mol H_(2)and 526.2 K,respectively,which are smaller than those of the as-cast alloy.It indicates the decreased hydride stability and improved hydrogen desorption property.By contrast with the as-cast alloy,the rapidly solidified alloy showed a preferable comprehensive hydrogen storage property.
基金The authors acknowledge that this work was financially supported by the Gannan Oil Tea Camellia Industry Collaborative Innovation Center(Grant No.YP201610).
文摘Moisture sorption isotherms and thermodynamic properties of Camellia oleifera seeds as influenced by oil content were investigated.Moisture desorption and adsorption isotherms of Camellia oleifera seeds,kernels and shells from three varieties were determined using constant temperature and humidity chamber method at different temperatures(10°C,25°C,and 40°C)with water activity ranging from 0.20 to 0.90.Six selected mathematic models were employed to fit the experimental data.The Peleg model gave the best results for both seeds and kernels and Langmuir model was the best for shells.The difference of equilibrium moisture contents at the same water activities during desorption and adsorption indicated the occurrence of hysteresis of adsorption processes and the equilibrium moisture contents tended to decrease with the increasing oil content and temperature.The binding energy and average capacity per unit mass decreased with increasing temperature and oil content.The relationships between water activity and the logarithm of sorption activity showed the capillary porous body characteristics of the seeds.