The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to ob...The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods.展开更多
MOFs are among the most popular precursors and templates for deriving various porous materials,where the derivatives can inherit a large surface area,abundant active sites for targeted functionalities and a high degre...MOFs are among the most popular precursors and templates for deriving various porous materials,where the derivatives can inherit a large surface area,abundant active sites for targeted functionalities and a high degree of porosity inherited from their parent MOFs.Those unique structural features make them promising candidates in multiple applications.More interestingly,the structure and properties of these MOF derivatives can be modulated by the choice of the parent MOFs and the design in the conversion process.In this overview,the transformation pathways from MOFs into their porous derivatives,the principles underlying these transformations,and the behavior of the MOF components in the transition process are discussed.Recently,there has been tremendous progress in preserving and enhancing the surface area,the amount of active sites and the level of porosity of the MOF-derived materials for targeted applications,from the perspectives of both customizing the parent MOFs and tailoring the transformation process.To develop the rationally designed MOF-derived materials and thus to elucidate the precursor-process-product correlations,some typical examples of the MOF derivatives applied in electrochemical energy storage and conversion,water treatment,gas sensing,and biomedicine are discussed to demonstrate the effectiveness of the key design strategies.展开更多
An efficient solution-processable route employing Pb(Ac)2 as lead source and anti-solvent treatment to achieve fully covered and homogenous perovskite films is reported. The effect of different solution methods and de...An efficient solution-processable route employing Pb(Ac)2 as lead source and anti-solvent treatment to achieve fully covered and homogenous perovskite films is reported. The effect of different solution methods and device architectures on the morphologies of perovskite films were systematically investigated. Our results show that the planar perovskite layer fabricated by one-step solution method achieved fully covered and pinhole-free films. Further anti-solvent treatment using chlorobenzene (CB) promoted a perovskite film with highly smooth surfaces and enlarged grain sizes. Device fabricated from CB treated perovskite film achieved a best PCE of 15.80%, in comparison with 14.02%for the untreated device. These results evidently suggest a feasible route towards controlling the crystallization and morphology of planar heterojunction (PHJ) PSCs for improved efficiency.展开更多
基金Supported by the National Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods.
基金the National Research Foundation(NRF)Singapore for funding under NRF-CRP17-2017-01(R-284-000-165-281)for the research conducted at the National University of Singapore.
文摘MOFs are among the most popular precursors and templates for deriving various porous materials,where the derivatives can inherit a large surface area,abundant active sites for targeted functionalities and a high degree of porosity inherited from their parent MOFs.Those unique structural features make them promising candidates in multiple applications.More interestingly,the structure and properties of these MOF derivatives can be modulated by the choice of the parent MOFs and the design in the conversion process.In this overview,the transformation pathways from MOFs into their porous derivatives,the principles underlying these transformations,and the behavior of the MOF components in the transition process are discussed.Recently,there has been tremendous progress in preserving and enhancing the surface area,the amount of active sites and the level of porosity of the MOF-derived materials for targeted applications,from the perspectives of both customizing the parent MOFs and tailoring the transformation process.To develop the rationally designed MOF-derived materials and thus to elucidate the precursor-process-product correlations,some typical examples of the MOF derivatives applied in electrochemical energy storage and conversion,water treatment,gas sensing,and biomedicine are discussed to demonstrate the effectiveness of the key design strategies.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.51572072 and 21402045)Wuhan Science and Technology Bureau of Hubei Province of China (No. 2013010602010209)+1 种基金Educational Commission of Hubei Province of China(No. D20141006)Department of Science & Technology of Hubei Province of China(No. 2015CFA118)
文摘An efficient solution-processable route employing Pb(Ac)2 as lead source and anti-solvent treatment to achieve fully covered and homogenous perovskite films is reported. The effect of different solution methods and device architectures on the morphologies of perovskite films were systematically investigated. Our results show that the planar perovskite layer fabricated by one-step solution method achieved fully covered and pinhole-free films. Further anti-solvent treatment using chlorobenzene (CB) promoted a perovskite film with highly smooth surfaces and enlarged grain sizes. Device fabricated from CB treated perovskite film achieved a best PCE of 15.80%, in comparison with 14.02%for the untreated device. These results evidently suggest a feasible route towards controlling the crystallization and morphology of planar heterojunction (PHJ) PSCs for improved efficiency.