Let L be the derivation Lie algebra of C[t1^±1 , t2^±1 ]. Given a triangle decomposition L = L+ η + L-, we define a nonsingular Lie algebra homomorphism φ : L+ → C and the universal Whittaker L-module...Let L be the derivation Lie algebra of C[t1^±1 , t2^±1 ]. Given a triangle decomposition L = L+ η + L-, we define a nonsingular Lie algebra homomorphism φ : L+ → C and the universal Whittaker L-module We of type φ. We obtain all Whittaker vectors and submodules of We. Moreover, all simple Whittaker L-modules of type φ are determined.展开更多
We investigate Lie bialgebra structures on the derivation Lie algebra over the quantum torus. It is proved that, for the derivation Lie algebra W over a rank 2 quantum torus, all Lie bialgebra structures on W are the ...We investigate Lie bialgebra structures on the derivation Lie algebra over the quantum torus. It is proved that, for the derivation Lie algebra W over a rank 2 quantum torus, all Lie bialgebra structures on W are the coboundary triangular Lie bialgebras. As a by-product, it is also proved that the first eohomology group H1 (W, W × W) is trivial,展开更多
Let L be the symplectic algebra or the orthogonal algebra over a commutative ring R, h the maximal torus of L consisting of all diagonal matrices in L, and b the standard Borel subalgebra of L containing h. In this pa...Let L be the symplectic algebra or the orthogonal algebra over a commutative ring R, h the maximal torus of L consisting of all diagonal matrices in L, and b the standard Borel subalgebra of L containing h. In this paper, we first determine the intermediate algebras between h and b, then for such an intermediate algebra, we give an explicit description on its derivations, provided that R is a commutative ring with identity and 2 is invertible in R.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.11571145 and 11271165)the Youth Foundation of National Natural Science Foundation of China(Grant Nos.11101350 and 11302052)the Natural Science Foundation of Fujian Province(Grant No.2010J05001)
文摘Let L be the derivation Lie algebra of C[t1^±1 , t2^±1 ]. Given a triangle decomposition L = L+ η + L-, we define a nonsingular Lie algebra homomorphism φ : L+ → C and the universal Whittaker L-module We of type φ. We obtain all Whittaker vectors and submodules of We. Moreover, all simple Whittaker L-modules of type φ are determined.
文摘We investigate Lie bialgebra structures on the derivation Lie algebra over the quantum torus. It is proved that, for the derivation Lie algebra W over a rank 2 quantum torus, all Lie bialgebra structures on W are the coboundary triangular Lie bialgebras. As a by-product, it is also proved that the first eohomology group H1 (W, W × W) is trivial,
文摘Let L be the symplectic algebra or the orthogonal algebra over a commutative ring R, h the maximal torus of L consisting of all diagonal matrices in L, and b the standard Borel subalgebra of L containing h. In this paper, we first determine the intermediate algebras between h and b, then for such an intermediate algebra, we give an explicit description on its derivations, provided that R is a commutative ring with identity and 2 is invertible in R.