密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离d_c无法有效应对各个场景并且密度峰值算法人工选取聚类中心...密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离d_c无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离d_c,然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。展开更多
针对传统模糊C均值聚类算法和基于K-means++优化聚类中心的模糊C均值算法存在初始聚类中心敏感、聚类速度收敛慢、聚类算法需要人为给定聚类数目等缺陷,受密度峰值聚类算法(Clustering by Fast Search and Find of Density Peaks,CFSFDP...针对传统模糊C均值聚类算法和基于K-means++优化聚类中心的模糊C均值算法存在初始聚类中心敏感、聚类速度收敛慢、聚类算法需要人为给定聚类数目等缺陷,受密度峰值聚类算法(Clustering by Fast Search and Find of Density Peaks,CFSFDP)的启发,提出了基于密度峰值算法优化的模糊C均值聚类算法,自适应产生初始聚类中心,确定聚类数目,并优化算法收敛过程。实验结果表明,改进后的算法与传统模糊聚类C均值算法相比能够准确地得到簇的数目,性能有明显的提高,并加快算法的收敛速度,达到相对更好的聚类效果。展开更多
文摘密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离d_c无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离d_c,然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。
文摘针对传统模糊C均值聚类算法和基于K-means++优化聚类中心的模糊C均值算法存在初始聚类中心敏感、聚类速度收敛慢、聚类算法需要人为给定聚类数目等缺陷,受密度峰值聚类算法(Clustering by Fast Search and Find of Density Peaks,CFSFDP)的启发,提出了基于密度峰值算法优化的模糊C均值聚类算法,自适应产生初始聚类中心,确定聚类数目,并优化算法收敛过程。实验结果表明,改进后的算法与传统模糊聚类C均值算法相比能够准确地得到簇的数目,性能有明显的提高,并加快算法的收敛速度,达到相对更好的聚类效果。