The DFT-B3LPY method, with basis set 6-31G*, is employed to calculate the structures and properties for aromatic explosives containing -NO 2 groups, nitro derivatives of benzene and nitro derivatives of aminobenzene. ...The DFT-B3LPY method, with basis set 6-31G*, is employed to calculate the structures and properties for aromatic explosives containing -NO 2 groups, nitro derivatives of benzene and nitro derivatives of aminobenzene. It is found that there is a parallel relationship between experimental impact sensitivity and bond order of the weakest C-NO 2 bond in a molecule in each series. Previously, based on semiempirical MO calculations, "the principle of the smallest bond order (PSBO) " has been proposed by us to identify the relative magnitudes of impact sensitivity of a series of explosive compounds with similar molecular structures. Here, PSBO is verified powerfully from the ab initio calculations for title compounds.展开更多
Based on an experimental phenomenon that catalytic activity of Pt and Pd for oxygen reduction reaction (ORR) changes with catalyst supports from C to TiO2, density function theory (DFT) was used to elucidate the cause...Based on an experimental phenomenon that catalytic activity of Pt and Pd for oxygen reduction reaction (ORR) changes with catalyst supports from C to TiO2, density function theory (DFT) was used to elucidate the cause behind the difference in catalysis caused by catalyst supports. First, factors closely associated with the first electron transfer of the ORR were assessed in the light of quantum chemistry. Then intermediate (atomic oxygen, O) adsorption strength on the catalyst surface was calculated. The results show that, in terms of minimum energy difference, the best orbital symmetry match, and the maximum orbital overlap, TiO2 does bring about a very positive effect on catalysts Pd/TiO2 for the first electron transfer of the ORR. Especially, TiO2 remarkably expands the space size of Pd/TiO2 HOMO orbital and improves orbital overlap of Pd/TiO2 HOMO and O2 LUMO. The analysis of deformation density and partial density of state shows that the strong interaction between Pt and Ti leads to a strong adsorption of intermediate O on Pt/TiO2, but the strong interaction between Pd and surface O causes positive net charge of Pd and a weak adsorption of intermediate O on Pd/TiO2. Thus, the ORR can proceed more smoothly on Pd/TiO2 than Pt/TiO2 in every respect of maximum orbital overlap and rate delay by intermediate O. The research also discloses that several factors lead to less activity of TiO2-supported Pt and Pd catalysts than the C-supported ones for the ORR. These factors include the poor dispersion of Pt and Pd particles on TiO2, poor electric conduction of TiO2 carrier itself, and bigger energy difference between HOMO of TiO2-carried metallic catalysts and LUMO of O2 molecule due to electrons deeply embedded in the semiconductor TiO2 carrier.展开更多
NH_(3)-SCR脱硝技术由于其良好的脱硝效率及稳定性受到广泛应用,其核心是催化剂。γ-Fe_(2)O_(3)是一种具有良好低温脱硝活性的催化剂,采用Cu对其掺杂改性可有效提高其性能。为探究其反应机理,采用密度泛函理论(Density Function Theory...NH_(3)-SCR脱硝技术由于其良好的脱硝效率及稳定性受到广泛应用,其核心是催化剂。γ-Fe_(2)O_(3)是一种具有良好低温脱硝活性的催化剂,采用Cu对其掺杂改性可有效提高其性能。为探究其反应机理,采用密度泛函理论(Density Function Theory,DFT)方法对SCR反应过程中NH_(3)、NO、O_(2)等反应物分子在Cu掺杂γ-Fe_(2)O_(3)催化剂表面的吸附行为进行研究。结果表明,NH_(3)、NO、O_(2)均会吸附在Cu、Fe两个活性位点上,并形成稳定的吸附构型。在NH 3吸附过程中,NH_(3)会失去电子,N原子与Fe、Cu形成稳定的化学键。NO以N原子端靠近催化剂表面时,主要发生化学吸附,而以O原子靠近时发生物理吸附。NO主要表现为失去电子,当以N原子吸附时形成了稳定的化学键。O_(2)吸附时会得到电子并与金属离子之间形成稳定的化学吸附构型。在吸附过程中,小分子吸附于Fe活性位上时较为稳定。展开更多
文摘The DFT-B3LPY method, with basis set 6-31G*, is employed to calculate the structures and properties for aromatic explosives containing -NO 2 groups, nitro derivatives of benzene and nitro derivatives of aminobenzene. It is found that there is a parallel relationship between experimental impact sensitivity and bond order of the weakest C-NO 2 bond in a molecule in each series. Previously, based on semiempirical MO calculations, "the principle of the smallest bond order (PSBO) " has been proposed by us to identify the relative magnitudes of impact sensitivity of a series of explosive compounds with similar molecular structures. Here, PSBO is verified powerfully from the ab initio calculations for title compounds.
基金Supported by the National Natural Science Foundation of China (Grant No. 20676156)the Chinese Ministry of Education (Grant No. 307021)+1 种基金the National 863 Program (Grant Nos. 2006AA11A141 and 2007AA05Z124)the Chongqing Sci &Tech Key Project (Grant No. CSTC2007AB6012)
文摘Based on an experimental phenomenon that catalytic activity of Pt and Pd for oxygen reduction reaction (ORR) changes with catalyst supports from C to TiO2, density function theory (DFT) was used to elucidate the cause behind the difference in catalysis caused by catalyst supports. First, factors closely associated with the first electron transfer of the ORR were assessed in the light of quantum chemistry. Then intermediate (atomic oxygen, O) adsorption strength on the catalyst surface was calculated. The results show that, in terms of minimum energy difference, the best orbital symmetry match, and the maximum orbital overlap, TiO2 does bring about a very positive effect on catalysts Pd/TiO2 for the first electron transfer of the ORR. Especially, TiO2 remarkably expands the space size of Pd/TiO2 HOMO orbital and improves orbital overlap of Pd/TiO2 HOMO and O2 LUMO. The analysis of deformation density and partial density of state shows that the strong interaction between Pt and Ti leads to a strong adsorption of intermediate O on Pt/TiO2, but the strong interaction between Pd and surface O causes positive net charge of Pd and a weak adsorption of intermediate O on Pd/TiO2. Thus, the ORR can proceed more smoothly on Pd/TiO2 than Pt/TiO2 in every respect of maximum orbital overlap and rate delay by intermediate O. The research also discloses that several factors lead to less activity of TiO2-supported Pt and Pd catalysts than the C-supported ones for the ORR. These factors include the poor dispersion of Pt and Pd particles on TiO2, poor electric conduction of TiO2 carrier itself, and bigger energy difference between HOMO of TiO2-carried metallic catalysts and LUMO of O2 molecule due to electrons deeply embedded in the semiconductor TiO2 carrier.
文摘NH_(3)-SCR脱硝技术由于其良好的脱硝效率及稳定性受到广泛应用,其核心是催化剂。γ-Fe_(2)O_(3)是一种具有良好低温脱硝活性的催化剂,采用Cu对其掺杂改性可有效提高其性能。为探究其反应机理,采用密度泛函理论(Density Function Theory,DFT)方法对SCR反应过程中NH_(3)、NO、O_(2)等反应物分子在Cu掺杂γ-Fe_(2)O_(3)催化剂表面的吸附行为进行研究。结果表明,NH_(3)、NO、O_(2)均会吸附在Cu、Fe两个活性位点上,并形成稳定的吸附构型。在NH 3吸附过程中,NH_(3)会失去电子,N原子与Fe、Cu形成稳定的化学键。NO以N原子端靠近催化剂表面时,主要发生化学吸附,而以O原子靠近时发生物理吸附。NO主要表现为失去电子,当以N原子吸附时形成了稳定的化学键。O_(2)吸附时会得到电子并与金属离子之间形成稳定的化学吸附构型。在吸附过程中,小分子吸附于Fe活性位上时较为稳定。