A cellular automaton (CA)-based model for the precise two-dimensional simulation of the dendritic morphology of cast aluminum alloys was developed. Compared with previous CA models, the new model considers the solid...A cellular automaton (CA)-based model for the precise two-dimensional simulation of the dendritic morphology of cast aluminum alloys was developed. Compared with previous CA models, the new model considers the solidification process in more detail, solving the solute and heat conservation equations in the modeling domain, including calculation of the solid fraction, the tip velocity, and the solute diffusion process, all of which have significant influence on the dendrite evolution. The rotating grids technique was used in the simulation to avoid anisotropy introduced by the square grid. Dendritic grain profiles for different crystallographic orientations show the existence of a great number of regular and parallel secondary and tertiary arms. The simulation results for the secondary arm spacing and grain size were compared with experimental data and with results reported in the literature. A good agreement was found between the simulated results and the experimental data. It can be concluded that the model can be used to predict the dendritic microstructure of aluminum alloy in a quantitative manner.展开更多
The operating conditions during the continuous casting process have a great effect on the microstructure of slab solidification, including primary and secondary dendritic arm spacing. On the basis of the analysis of a...The operating conditions during the continuous casting process have a great effect on the microstructure of slab solidification, including primary and secondary dendritic arm spacing. On the basis of the analysis of available work, a revised expression for describing secondary dendritic arm spacing during solidification of slab continuous casting was presented, and the relation between the ratio of primary dendritic arm spacing to secondary dendritic arm spacing and the cooling rate was obtained.展开更多
Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosi...Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.展开更多
The microstructure evolution and growth orientation of directionally solidified Mg-4 wt% Zn alloy in the growth rate range from 20 to 200μm/s were investigated. A typical cellular structure was observed with a growth...The microstructure evolution and growth orientation of directionally solidified Mg-4 wt% Zn alloy in the growth rate range from 20 to 200μm/s were investigated. A typical cellular structure was observed with a growth rate of 20 μm/s, and the cellular spacing was 115 μm. When the growth rate increased to 60 μm/s, cellular structure with some developed perturbations was obtained and the cellular spacing was 145 μm, suggesting that the cell-to-dendrite transition happened at the growth rate lower than 60 μm/s. As the growth rate further increased, the microstructure was dendritic and the primary dendritic arm spacing decreased. The relationship between the primary dendritic arm spacings and the growth rates was in good agreement with Trivedi model during dendritic growth. Besides, X-ray diffraction and transmission electron microscopy analyses showed that the growth direction of directionally solidified Mg-4 wt% Zn alloy was (1120) lay in {0002} crystal plane, and the preferred orientation was explained with the lattice vibration model for one-dimensional monatomic chain.展开更多
基金Supported by the National Natural Science Foundation of China (No. 10477010) and the National Key Basic Research and Devel-opment (973) Program of China (No. G2000067208-3)
文摘A cellular automaton (CA)-based model for the precise two-dimensional simulation of the dendritic morphology of cast aluminum alloys was developed. Compared with previous CA models, the new model considers the solidification process in more detail, solving the solute and heat conservation equations in the modeling domain, including calculation of the solid fraction, the tip velocity, and the solute diffusion process, all of which have significant influence on the dendrite evolution. The rotating grids technique was used in the simulation to avoid anisotropy introduced by the square grid. Dendritic grain profiles for different crystallographic orientations show the existence of a great number of regular and parallel secondary and tertiary arms. The simulation results for the secondary arm spacing and grain size were compared with experimental data and with results reported in the literature. A good agreement was found between the simulated results and the experimental data. It can be concluded that the model can be used to predict the dendritic microstructure of aluminum alloy in a quantitative manner.
基金Item Sponsored by Program for New Century Excellent Talents in University of Ministry of Education (NCET-04-0285)
文摘The operating conditions during the continuous casting process have a great effect on the microstructure of slab solidification, including primary and secondary dendritic arm spacing. On the basis of the analysis of available work, a revised expression for describing secondary dendritic arm spacing during solidification of slab continuous casting was presented, and the relation between the ratio of primary dendritic arm spacing to secondary dendritic arm spacing and the cooling rate was obtained.
基金financially supported by the National Key Research and Development Program of China(Grant No.2016YFB0701204)
文摘Multi-objective optimization has been increasingly applied in engineering where optimal decisions need to be made in the presence of trade-offs between two or more objectives. Minimizing the volume of shrinkage porosity, while reducing the secondary dendritic arm spacing of a wheel casting during low-pressure die casting(LPDC) process, was taken as an example of such problem. A commercial simulation software Pro CASTTM was applied to simulate the filling and solidification processes. Additionally, a program for integrating the optimization algorithm with numerical simulation was developed based on SiPESC. By setting pouring temperature and filling pressure as design variables, shrinkage porosity and secondary dendritic arm spacing as objective variables, the multi-objective optimization of minimum volume of shrinkage porosity and secondary dendritic arm spacing was achieved. The optimal combination of AZ91 D wheel casting was: pouring temperature 689 °C and filling pressure 6.5 kPa. The predicted values decreased from 4.1% to 2.1% for shrinkage porosity, and 88.5 μm to 81.2 μm for the secondary dendritic arm spacing. The optimal results proved the feasibility of the developed program in multi-objective optimization.
文摘The microstructure evolution and growth orientation of directionally solidified Mg-4 wt% Zn alloy in the growth rate range from 20 to 200μm/s were investigated. A typical cellular structure was observed with a growth rate of 20 μm/s, and the cellular spacing was 115 μm. When the growth rate increased to 60 μm/s, cellular structure with some developed perturbations was obtained and the cellular spacing was 145 μm, suggesting that the cell-to-dendrite transition happened at the growth rate lower than 60 μm/s. As the growth rate further increased, the microstructure was dendritic and the primary dendritic arm spacing decreased. The relationship between the primary dendritic arm spacings and the growth rates was in good agreement with Trivedi model during dendritic growth. Besides, X-ray diffraction and transmission electron microscopy analyses showed that the growth direction of directionally solidified Mg-4 wt% Zn alloy was (1120) lay in {0002} crystal plane, and the preferred orientation was explained with the lattice vibration model for one-dimensional monatomic chain.