The grain refinement and macrosegregation control of GCrl5 bearing steel were investigated under a type of rarely-used electromagnetic stirring, vertical electromagnetic stirring (V-EMS), in continuous casting. V-EM...The grain refinement and macrosegregation control of GCrl5 bearing steel were investigated under a type of rarely-used electromagnetic stirring, vertical electromagnetic stirring (V-EMS), in continuous casting. V-EMS can create an upward electromagnetic force and generate longitudinal loop convection, which ena- bles the better mixing of the upper part with the lower part of the liquid steel. The results showed that ap- plying V-EMS can enlarge the region of the equiaxed grain, decrease the secondary dendrite arm spacing (SDAS) and reduce the segregation of both carbon and sulfur. After applying V-EMS, liquid steel with a high solute concentration is brought to the dendrite tips, making the dendrite arms partially melt. The length of the dendrite fragment is approximately 1.8 mm, 10 to 12 times the SDAS. Upon increasing the amount of cooling water from 2.0 to 3.5 m3/h, the dendrite fragments exhibit an obvious aggregation fol- lowing V-EMS. Finally, a criterion for dendrite fragmentation under V-EMS was derived based on the dendrite fragmentation theory of Campanella et al.展开更多
The influence of the rotating magnetic field (RMF) on the solidification process of Pb-Sn binary alloys is studied by comparing the solidification microstructures under the common condition; RMF condition. It is found...The influence of the rotating magnetic field (RMF) on the solidification process of Pb-Sn binary alloys is studied by comparing the solidification microstructures under the common condition; RMF condition. It is found that the RMF can completely eliminate the gravity induced macrosegregation,; result in dendrite fragmentation; promote solute diffusion velocity. These differences are regarded as the effect of complicated melt flow caused by RMF. Moreover, when the content of the primary phase is small, many spherical microstructures form under the RMF condition. The analyses indicate that these special microstructures are likely the conjunction action of melt flow; concentration; temperature field uniformity caused by RMF.展开更多
This work explores the correlation between the characteristics of the cast structure(dendrite growth pattern,dendrite morphology and macro-texture)and strain hardening capacity during high temperature deformation of M...This work explores the correlation between the characteristics of the cast structure(dendrite growth pattern,dendrite morphology and macro-texture)and strain hardening capacity during high temperature deformation of Mg-5Sn-0.3Li-0 and 3Zn multi-component alloys.The three dimensional(3D)morphology of the dendrite structure demonstrates the transition of the growth directions from<1123>,<1120>and<1122>to<1123>and<1120>due to the addition of Zn.The simultaneous effects of growing tendency and the decrement of dendrite coarsening rate at the solidification interval lead to dendrite morphology transition from the globular-like to the hyper-branch structure.This morphology transition results in the variation of the solidification macro-texture,which has effectively influenced the dominant deformation mechanisms(slip/twin activity).The higher activity of the slip systems increases the tendency of the dendrite arms for bending along the deformation direction and fragmentation.Apart from this,the dendrite holding hyper-branch structure with an average thickness below 20μm are more favorable for fragmentation.The dendrite fragmentation leads to considerable softening fractions,and as an effective strain compensation mechanism increases the workability of dendritic structure.展开更多
The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a...The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.展开更多
Solidification experiments of Cr steel under linear EMS were conducted to investigate the columnar-to-equiaxed transition(CET).The results are compared with those in carbon steel to clarify effect of Cr content and EM...Solidification experiments of Cr steel under linear EMS were conducted to investigate the columnar-to-equiaxed transition(CET).The results are compared with those in carbon steel to clarify effect of Cr content and EMS.The conclusions are as follow:The criterion for dendrite fragmentation under linear EMS is obtained and verified by previous paper,then is considered valid for Cr steel.Investigation is carried out on the relation between the superficial velocity in the bulk flow and critical solid fraction at the time of dendrite fragmentation(CET occurrence).The critical solid fraction is smaller in high Cr case.As a result,the CET occurrence is more difficult in this case.展开更多
Thermo-electric currents in the presence of static magnetic fields generate significant electromagnetic forces(TEM forces).The thermo-electric currents are due to the Seebeck effect when temperature gradients exist in...Thermo-electric currents in the presence of static magnetic fields generate significant electromagnetic forces(TEM forces).The thermo-electric currents are due to the Seebeck effect when temperature gradients exist in the material. Those forces may produce various phenomena like pumping,stirring in liquid metals as well as solid motions,stresses in the solid metal.Those effects may be encountered especially during the solidification of metallic materials because of the existence of significant temperature gradients.In liquid metals the application of a static magnetic field enhances TEM convection at moderate intensity but also damps it when it is strong enough.This means that there exists a maximum of the convection which occurs when the Hartmann layers are comparable to the considered length scale.However,the smaller the length scales are(for example when primary or secondary dendrite arm spacings are considered),the higher the magnetic field strength which is needed to damp the TEM convection.So far,many solidification experiments on various types of alloys(e.g.,Sn-Pb,Al-Cu,Al-Si,Al-Ni etc.)have been carried out.The experiments have shown that TEM convection occurs both in the liquid bulk but also in the deep mushy zone.TEM convection may strongly influence the meso-macrosegregation patterns,the solidification structures and the grain boundaries leading to the striking grain boundary structure of the mushy zone.The flow pattern and accordingly the segregations may be controlled by changing the orientation of the applied magnetic field,i.e.,axial or transverse.We have shown that very high magnetic field strengths,up to 16 T,are needed to damp the TEM convection.Heuristic numerical and analytical investigations show that the TEM force density is very important in the liquid,but can be even more important in the solid.Indeed,for high Hartmann number,the electric currents are confined in a small skin layer near the solid boundaries leading to a decay of the flow.However,the situation is different in the solid,sinc展开更多
Dendrites are the most common microstructural features in the cast metals,significantly affecting the structure integrity and mechanical properties of the castings.In this study,the in situ synchrotron X-ray radiograp...Dendrites are the most common microstructural features in the cast metals,significantly affecting the structure integrity and mechanical properties of the castings.In this study,the in situ synchrotron X-ray radiographic and tomographic imaging techniques were combined to evaluate the critical fracture stress of the growing dendrite tip during the solidification of an Al-15 wt%Cu alloy under an external electromagnetic force.Two dendritic 3D models have been proposed to simulate the dendrite 3D morphologic characteristics and thus revealed that the critical fracture stresses of the Al dendrites at temperatures close to its melting point were in the range of 0.5 kPa–0.05 MPa.The present results demonstrate the feasibility of measuring the high-temperature mechanical properties of the metallic dendrites.展开更多
基金supported by the National Natural Science Foundation of China(No.50834009)the Key Project of the Ministry of Education of China(No.311014)the 111 Project of China(No.B07015)
文摘The grain refinement and macrosegregation control of GCrl5 bearing steel were investigated under a type of rarely-used electromagnetic stirring, vertical electromagnetic stirring (V-EMS), in continuous casting. V-EMS can create an upward electromagnetic force and generate longitudinal loop convection, which ena- bles the better mixing of the upper part with the lower part of the liquid steel. The results showed that ap- plying V-EMS can enlarge the region of the equiaxed grain, decrease the secondary dendrite arm spacing (SDAS) and reduce the segregation of both carbon and sulfur. After applying V-EMS, liquid steel with a high solute concentration is brought to the dendrite tips, making the dendrite arms partially melt. The length of the dendrite fragment is approximately 1.8 mm, 10 to 12 times the SDAS. Upon increasing the amount of cooling water from 2.0 to 3.5 m3/h, the dendrite fragments exhibit an obvious aggregation fol- lowing V-EMS. Finally, a criterion for dendrite fragmentation under V-EMS was derived based on the dendrite fragmentation theory of Campanella et al.
基金supported by the National Natural Science Foundation of China(Grant Nos.50331040 and 60171034).
文摘The influence of the rotating magnetic field (RMF) on the solidification process of Pb-Sn binary alloys is studied by comparing the solidification microstructures under the common condition; RMF condition. It is found that the RMF can completely eliminate the gravity induced macrosegregation,; result in dendrite fragmentation; promote solute diffusion velocity. These differences are regarded as the effect of complicated melt flow caused by RMF. Moreover, when the content of the primary phase is small, many spherical microstructures form under the RMF condition. The analyses indicate that these special microstructures are likely the conjunction action of melt flow; concentration; temperature field uniformity caused by RMF.
文摘This work explores the correlation between the characteristics of the cast structure(dendrite growth pattern,dendrite morphology and macro-texture)and strain hardening capacity during high temperature deformation of Mg-5Sn-0.3Li-0 and 3Zn multi-component alloys.The three dimensional(3D)morphology of the dendrite structure demonstrates the transition of the growth directions from<1123>,<1120>and<1122>to<1123>and<1120>due to the addition of Zn.The simultaneous effects of growing tendency and the decrement of dendrite coarsening rate at the solidification interval lead to dendrite morphology transition from the globular-like to the hyper-branch structure.This morphology transition results in the variation of the solidification macro-texture,which has effectively influenced the dominant deformation mechanisms(slip/twin activity).The higher activity of the slip systems increases the tendency of the dendrite arms for bending along the deformation direction and fragmentation.Apart from this,the dendrite holding hyper-branch structure with an average thickness below 20μm are more favorable for fragmentation.The dendrite fragmentation leads to considerable softening fractions,and as an effective strain compensation mechanism increases the workability of dendritic structure.
基金The authors would like to thank Mr Tetsuji Kuwabara of NAC Image Technology Inc.for support of high-speed photographingThis work was supported in part by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant No.JPMXS0118068348,JSPS KAKENHI Grant Nos.JP16H04247,JP16K14417,and 19K22061This work was funded in part by ImPACT Program of Council for Science,Technology and Innovation(Cabinet Office,Government of Japan).
文摘The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.
基金Item Sponsored by the Central Universities (N100409010) Project for Key Laboratory of Liaoning Province (LS2010065) +1 种基金"111 project"of Northeastern UniversityChina (B07015)
文摘Solidification experiments of Cr steel under linear EMS were conducted to investigate the columnar-to-equiaxed transition(CET).The results are compared with those in carbon steel to clarify effect of Cr content and EMS.The conclusions are as follow:The criterion for dendrite fragmentation under linear EMS is obtained and verified by previous paper,then is considered valid for Cr steel.Investigation is carried out on the relation between the superficial velocity in the bulk flow and critical solid fraction at the time of dendrite fragmentation(CET occurrence).The critical solid fraction is smaller in high Cr case.As a result,the CET occurrence is more difficult in this case.
基金Item Sponsored by NSFC (China) and CNRS (France) through French-Chinese OPTIMAG project
文摘Thermo-electric currents in the presence of static magnetic fields generate significant electromagnetic forces(TEM forces).The thermo-electric currents are due to the Seebeck effect when temperature gradients exist in the material. Those forces may produce various phenomena like pumping,stirring in liquid metals as well as solid motions,stresses in the solid metal.Those effects may be encountered especially during the solidification of metallic materials because of the existence of significant temperature gradients.In liquid metals the application of a static magnetic field enhances TEM convection at moderate intensity but also damps it when it is strong enough.This means that there exists a maximum of the convection which occurs when the Hartmann layers are comparable to the considered length scale.However,the smaller the length scales are(for example when primary or secondary dendrite arm spacings are considered),the higher the magnetic field strength which is needed to damp the TEM convection.So far,many solidification experiments on various types of alloys(e.g.,Sn-Pb,Al-Cu,Al-Si,Al-Ni etc.)have been carried out.The experiments have shown that TEM convection occurs both in the liquid bulk but also in the deep mushy zone.TEM convection may strongly influence the meso-macrosegregation patterns,the solidification structures and the grain boundaries leading to the striking grain boundary structure of the mushy zone.The flow pattern and accordingly the segregations may be controlled by changing the orientation of the applied magnetic field,i.e.,axial or transverse.We have shown that very high magnetic field strengths,up to 16 T,are needed to damp the TEM convection.Heuristic numerical and analytical investigations show that the TEM force density is very important in the liquid,but can be even more important in the solid.Indeed,for high Hartmann number,the electric currents are confined in a small skin layer near the solid boundaries leading to a decay of the flow.However,the situation is different in the solid,sinc
基金funding and support by the National Natural Science Foundation of China(52004101,92166112)the Natural Science Foundation of Guangdong Province(No.2022A1515012276)+4 种基金the Educational Commission of Guangdong Province(No.2022ZDZX3002)Synchrotron X-ray beam time by the Swiss Light Source,Paul Scherrer Institute,Switzerland(proposal number 20141167,20150177 and 20160284)Diamond Light Source,UK(MT7440)Access to the University of Hull supercomputer,Viper and the support by its technical teamthe proofreading by Dr.Florian Vogel of Jinan University.
文摘Dendrites are the most common microstructural features in the cast metals,significantly affecting the structure integrity and mechanical properties of the castings.In this study,the in situ synchrotron X-ray radiographic and tomographic imaging techniques were combined to evaluate the critical fracture stress of the growing dendrite tip during the solidification of an Al-15 wt%Cu alloy under an external electromagnetic force.Two dendritic 3D models have been proposed to simulate the dendrite 3D morphologic characteristics and thus revealed that the critical fracture stresses of the Al dendrites at temperatures close to its melting point were in the range of 0.5 kPa–0.05 MPa.The present results demonstrate the feasibility of measuring the high-temperature mechanical properties of the metallic dendrites.