Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space e...Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space exploration programs.The main issue regarding to these missions is high mission cost for both debris removal missions and space environmental tests to achieve high maturity level for new space-usable technologies.Since,these missions are unavoidable for future of human space activities,a solution which can tackle these challenges is necessary.This paper will address to an idea which has the possibility to give a solution for facilitating technology readiness level(TRL)maturity tests by debris removal mission platform consideration.展开更多
Bridging laboratory research and practical utilization is of crucial importance for the development of green ammonia synthetic technologies. A decentralized photo-assisted electrochemical-based demonstrator has been p...Bridging laboratory research and practical utilization is of crucial importance for the development of green ammonia synthetic technologies. A decentralized photo-assisted electrochemical-based demonstrator has been proposed for green ammonia synthesis from renewable electricity, air and water, where well-known defect-laden WO_(3) is used as the working electrode, and a commercially available PV panel supplies renewable electricity. In this demonstrator, defect-laden WO_(3) exhibits the optimum electrochemical NH_(3) formation rate(4.51 × 10^(-12)mol s^(-1)cm^(-2)) in 0.1 M K_(2)SO_(4)in a photovoltaic electrochemical(PV-EC) system. A system-level energy and cost analysis was conducted to investigate its economic viability and a general evaluation tool for system performance and cost estimation was proposed. This advance enables the possibility of integrating the small-scale green ammonia demonstrator into a stand-alone farm system.展开更多
设计一个示教用通用型关节式4自由度机械手的三维模型,主要由旋转底座、大臂俯仰关节、小臂俯仰关节、腕部旋转关节构成,通过关节舵机作为驱动装置实现机械手的运动。采用D-H法进行运动建模得出位姿齐次坐标变换矩阵并给出实例,通过Soli...设计一个示教用通用型关节式4自由度机械手的三维模型,主要由旋转底座、大臂俯仰关节、小臂俯仰关节、腕部旋转关节构成,通过关节舵机作为驱动装置实现机械手的运动。采用D-H法进行运动建模得出位姿齐次坐标变换矩阵并给出实例,通过Solid Works Motion实现运动算例和动态仿真效果,从而验证运动模型。编程求解机械手工作空间并用末端位置的坐标点阵表示,通过对位姿变换矩阵的运算得到机械手逆运动学方程并求解。展开更多
基金Supported by the National Natural Science Foundation of China(11572037)
文摘Considering current space debris situation in outer space environment,different methods for debris removal missions are proposed.In addition,advanced technologies are needed to be demonstrated for future human space exploration programs.The main issue regarding to these missions is high mission cost for both debris removal missions and space environmental tests to achieve high maturity level for new space-usable technologies.Since,these missions are unavoidable for future of human space activities,a solution which can tackle these challenges is necessary.This paper will address to an idea which has the possibility to give a solution for facilitating technology readiness level(TRL)maturity tests by debris removal mission platform consideration.
基金grateful to the Natural Sciences and Engineering Council of Canada for supportthe Nation Natural Science Foundation of China (NSFC 21878162,21872102)+4 种基金support of the NSFC(52102311)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08L101)the Special Fund for the Sci-tech Innovation Strategy of Guangdong Province(210629095860472)the Shenzhen Natural Science Foundation(GXWD20201231105722002-20200824163747001)the Shenzhen Key Laboratory of Eco-materials and Renewable Energy(ZDSYS20200922160400001)。
文摘Bridging laboratory research and practical utilization is of crucial importance for the development of green ammonia synthetic technologies. A decentralized photo-assisted electrochemical-based demonstrator has been proposed for green ammonia synthesis from renewable electricity, air and water, where well-known defect-laden WO_(3) is used as the working electrode, and a commercially available PV panel supplies renewable electricity. In this demonstrator, defect-laden WO_(3) exhibits the optimum electrochemical NH_(3) formation rate(4.51 × 10^(-12)mol s^(-1)cm^(-2)) in 0.1 M K_(2)SO_(4)in a photovoltaic electrochemical(PV-EC) system. A system-level energy and cost analysis was conducted to investigate its economic viability and a general evaluation tool for system performance and cost estimation was proposed. This advance enables the possibility of integrating the small-scale green ammonia demonstrator into a stand-alone farm system.
文摘设计一个示教用通用型关节式4自由度机械手的三维模型,主要由旋转底座、大臂俯仰关节、小臂俯仰关节、腕部旋转关节构成,通过关节舵机作为驱动装置实现机械手的运动。采用D-H法进行运动建模得出位姿齐次坐标变换矩阵并给出实例,通过Solid Works Motion实现运动算例和动态仿真效果,从而验证运动模型。编程求解机械手工作空间并用末端位置的坐标点阵表示,通过对位姿变换矩阵的运算得到机械手逆运动学方程并求解。