DTN(delay tolerant network)网络的特点及其采用的保管传输机制使得DTN极易耗尽其有限的网络资源(缓存、带宽等),从而导致网络拥塞,降低网络性能。针对这个问题,在应用增强型PROPHET(probabilistic routing protocol using history of ...DTN(delay tolerant network)网络的特点及其采用的保管传输机制使得DTN极易耗尽其有限的网络资源(缓存、带宽等),从而导致网络拥塞,降低网络性能。针对这个问题,在应用增强型PROPHET(probabilistic routing protocol using history of encounters and transitivity)路由算法的基础上,给出了一种基于归一化混合参数的缓存管理策略。应用这种缓存管理策略的DTN网络会优先丢弃归一化混合参数小的消息,以使节点获得足够接收新消息的缓存空间,从而有效地缓解拥塞。仿真结果表明,基于归一化混合参数的缓存管理策略在消息递交率、开销率及平均时延几个方面的性能表现优于应用传统缓存管理策略。展开更多
The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-...The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-forward paradigm with random or controlled movement of resource rich mobile nodes. The application of such a model has been used in several emerging networks, including mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and delay tolerant networks (DTNs). It is well known that mobility increases the capacity of MANETs by reducing the number of relays for routing, prolonging the lifespan of WSNs by using mobile nodes in place of bottleneck static sensors, and ensuring network connectivity in DTNs using mobile nodes to connect different parts of a disconnected network. Trajectory planning and the coordination of mobile nodes are two important design issues aiming to optimize or balance several measures, including delay, average number of relays, and moving distance. In this paper, we propose a new controlled mobility model with an expected polylogarithmic number of relays to achieve a good balance among several contradictory goals, including delay, the number of relays, and moving distance. The model is based on the small-world model where each static node has "short" link connections to its nearest neighbors and "long" link connections to other nodes following a certain probability distribution. Short links are regular wireless connections whereas long links are implemented using mobile nodes. Various issues are considered, including trade-offs between delay and average number of relays, selection of the number of mobile nodes, and selection of the number of long links. The effectiveness of the proposed model is evaluated analytically as well as through simulation.展开更多
针对延迟容忍网络数据传输成功率低、延迟较大,提出一种基于节点位置预测的社会性DTN路由LPSN(Location Prediction and Social Network based routing)。该算法根据节点的介数中心性和节点间的相似性来衡量节点的社会特性,结合节点的...针对延迟容忍网络数据传输成功率低、延迟较大,提出一种基于节点位置预测的社会性DTN路由LPSN(Location Prediction and Social Network based routing)。该算法根据节点的介数中心性和节点间的相似性来衡量节点的社会特性,结合节点的历史轨迹和当前位置,运用Markov模型对节点的下一个位置进行预测,综合分析确定更优的转发节点再进行数据传输。仿真结果表明,相比现有的路由算法SimBet和Prophet,LPSN算法在传输成功率、开销比上有较大提升。展开更多
延迟容忍网络(delay tolerant network,DTN)中,由于网络拓扑频繁变化,端到端之间不存在稳定的链路,如何选择合适的中继节点进行消息转发,使消息在较短时间内交付到目标节点是DTN中研究的关键问题之一.针对现有路由算法中继节点选择的盲...延迟容忍网络(delay tolerant network,DTN)中,由于网络拓扑频繁变化,端到端之间不存在稳定的链路,如何选择合适的中继节点进行消息转发,使消息在较短时间内交付到目标节点是DTN中研究的关键问题之一.针对现有路由算法中继节点选择的盲目性以及对消息副本的分发缺乏合理控制的问题,提出一种基于节点综合性能的自适应喷射等待路由算法(adaptive spray and wait routing algorithm based on comprehensive performance of node,CPN-ASW):在Spray(喷射)阶段引入节点相似度指标来衡量节点间运动轨迹的相似程度,根据节点相似度是否超过给定阈值采用不同的中继节点选择策略,确定中继节点后,按照节点相对效用值自适应分配消息副本数量;在Wait(等待)阶段实现主动转发,将消息转发给到目标节点投递预测值更高的中继节点.实验结果表明,与Epidemic,Spray and Wait(SaW),EBR,PBSW这4种算法相比,CPN-ASW算法能够有效提高消息投递率,降低网络开销和平均时延.展开更多
文摘DTN(delay tolerant network)网络的特点及其采用的保管传输机制使得DTN极易耗尽其有限的网络资源(缓存、带宽等),从而导致网络拥塞,降低网络性能。针对这个问题,在应用增强型PROPHET(probabilistic routing protocol using history of encounters and transitivity)路由算法的基础上,给出了一种基于归一化混合参数的缓存管理策略。应用这种缓存管理策略的DTN网络会优先丢弃归一化混合参数小的消息,以使节点获得足够接收新消息的缓存空间,从而有效地缓解拥塞。仿真结果表明,基于归一化混合参数的缓存管理策略在消息递交率、开销率及平均时延几个方面的性能表现优于应用传统缓存管理策略。
基金NSF of USA under Grant Nos.CCR 0329741,CNS 0422762,CNS 0434533,CNS 0531410,and CNS 0626240.
文摘The use of mobile nodes to improve network system performance has drawn considerable attention recently The movement-assisted model considers mobility as a desirable feature, where routing is based on the store-carry-forward paradigm with random or controlled movement of resource rich mobile nodes. The application of such a model has been used in several emerging networks, including mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and delay tolerant networks (DTNs). It is well known that mobility increases the capacity of MANETs by reducing the number of relays for routing, prolonging the lifespan of WSNs by using mobile nodes in place of bottleneck static sensors, and ensuring network connectivity in DTNs using mobile nodes to connect different parts of a disconnected network. Trajectory planning and the coordination of mobile nodes are two important design issues aiming to optimize or balance several measures, including delay, average number of relays, and moving distance. In this paper, we propose a new controlled mobility model with an expected polylogarithmic number of relays to achieve a good balance among several contradictory goals, including delay, the number of relays, and moving distance. The model is based on the small-world model where each static node has "short" link connections to its nearest neighbors and "long" link connections to other nodes following a certain probability distribution. Short links are regular wireless connections whereas long links are implemented using mobile nodes. Various issues are considered, including trade-offs between delay and average number of relays, selection of the number of mobile nodes, and selection of the number of long links. The effectiveness of the proposed model is evaluated analytically as well as through simulation.
文摘针对延迟容忍网络数据传输成功率低、延迟较大,提出一种基于节点位置预测的社会性DTN路由LPSN(Location Prediction and Social Network based routing)。该算法根据节点的介数中心性和节点间的相似性来衡量节点的社会特性,结合节点的历史轨迹和当前位置,运用Markov模型对节点的下一个位置进行预测,综合分析确定更优的转发节点再进行数据传输。仿真结果表明,相比现有的路由算法SimBet和Prophet,LPSN算法在传输成功率、开销比上有较大提升。
文摘延迟容忍网络(delay tolerant network,DTN)中,由于网络拓扑频繁变化,端到端之间不存在稳定的链路,如何选择合适的中继节点进行消息转发,使消息在较短时间内交付到目标节点是DTN中研究的关键问题之一.针对现有路由算法中继节点选择的盲目性以及对消息副本的分发缺乏合理控制的问题,提出一种基于节点综合性能的自适应喷射等待路由算法(adaptive spray and wait routing algorithm based on comprehensive performance of node,CPN-ASW):在Spray(喷射)阶段引入节点相似度指标来衡量节点间运动轨迹的相似程度,根据节点相似度是否超过给定阈值采用不同的中继节点选择策略,确定中继节点后,按照节点相对效用值自适应分配消息副本数量;在Wait(等待)阶段实现主动转发,将消息转发给到目标节点投递预测值更高的中继节点.实验结果表明,与Epidemic,Spray and Wait(SaW),EBR,PBSW这4种算法相比,CPN-ASW算法能够有效提高消息投递率,降低网络开销和平均时延.