The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials.It has been desired tofind a supporting material designed in molecular level to an...The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials.It has been desired tofind a supporting material designed in molecular level to anchor a single-atom catalyst and provide high degree of dispersion and substrate access in aqueous media.Here,we prepared discrete cages of metal-organic polyhedra anchoring single Pd atom(MOP-BPY(Pd))and successfully performed a Suzuki-Miyaura cross coupling reaction with various substrates in aqueous media.It was revealed that each tetrahedral cage of MOP-BPY(Pd)has 4.5 Pd atoms on average and retained its high degree of dispersion up to 3 months in water.The coupling efficiencies of the Suzuki-Miyaura cross coupling reaction exhibited more than 90.0%for various substrates we have tested in the aqueous media,which is superior to those of the molecular Pd complex and metal-organic framework(MOF)anchoring Pd atoms.Moreover,MOP-BPY(Pd)was successfully recovered and recycled without performance degradation.展开更多
The dispersion of ultrafine particles in the air can be achieved by mechanical method or surface modification. In this work, the electrostatic technique was first employed for anti-aggregation of ultrafine particles. ...The dispersion of ultrafine particles in the air can be achieved by mechanical method or surface modification. In this work, the electrostatic technique was first employed for anti-aggregation of ultrafine particles. When the relative humidity of the air is within the region of 70%-75%, effective storage time of ultrafine particles can reach 72 h after treatment by the electrostatic technique. The experimental results showed that this technique imparted ultrafine particles much more pronounced anti-aggregation property. In the dry air, the critical diameter of ultrafine particles anti-aggregated by the electrostatic technique is the function of particle property and charging field intensity. The critical diameter is inversely proportional to the square of the charging field intensity.展开更多
基金the Basic Science Research Program(No.NRF-2019R1A2C4069764)by Convergent Technology R&D Program for Hum an Augm entation(No.2019M3C1B8077549)through the National Research Foundation of Korea(NRF)funded by Ministry of Science and ICT.
文摘The challenge for single-atom catalysts in various C-C cross coupling reaction exists in the development of solid supporting materials.It has been desired tofind a supporting material designed in molecular level to anchor a single-atom catalyst and provide high degree of dispersion and substrate access in aqueous media.Here,we prepared discrete cages of metal-organic polyhedra anchoring single Pd atom(MOP-BPY(Pd))and successfully performed a Suzuki-Miyaura cross coupling reaction with various substrates in aqueous media.It was revealed that each tetrahedral cage of MOP-BPY(Pd)has 4.5 Pd atoms on average and retained its high degree of dispersion up to 3 months in water.The coupling efficiencies of the Suzuki-Miyaura cross coupling reaction exhibited more than 90.0%for various substrates we have tested in the aqueous media,which is superior to those of the molecular Pd complex and metal-organic framework(MOF)anchoring Pd atoms.Moreover,MOP-BPY(Pd)was successfully recovered and recycled without performance degradation.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59574031).
文摘The dispersion of ultrafine particles in the air can be achieved by mechanical method or surface modification. In this work, the electrostatic technique was first employed for anti-aggregation of ultrafine particles. When the relative humidity of the air is within the region of 70%-75%, effective storage time of ultrafine particles can reach 72 h after treatment by the electrostatic technique. The experimental results showed that this technique imparted ultrafine particles much more pronounced anti-aggregation property. In the dry air, the critical diameter of ultrafine particles anti-aggregated by the electrostatic technique is the function of particle property and charging field intensity. The critical diameter is inversely proportional to the square of the charging field intensity.