期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MIV-改进RBF神经网络的大坝变形监测模型
被引量:
4
1
作者
宁昕扬
刘晓青
《三峡大学学报(自然科学版)》
CAS
2016年第3期1-5,共5页
针对常规径向基函数(RBF)神经网络模型无法选择显著预报因子和易陷入局部最优解的问题,建立一种融合平均影响值(MIV)、改进果蝇算法(FOA)和RBF神经网络的大坝变形监测模型.通过引入MIV对水压、温度、时效三类预报因子进行筛选,并利用改...
针对常规径向基函数(RBF)神经网络模型无法选择显著预报因子和易陷入局部最优解的问题,建立一种融合平均影响值(MIV)、改进果蝇算法(FOA)和RBF神经网络的大坝变形监测模型.通过引入MIV对水压、温度、时效三类预报因子进行筛选,并利用改进FOA算法获得RBF神经网络模型中最佳的spread值,以提高模型的稳定性和预报精度.为验证模型的有效性,以某混凝土重力坝位移监测数据为例,分别建立多元线性回归模型、常规RBF模型、MIV-RBF模型和MIV-改进RBF模型.研究结果表明MIV-改进RBF神经网络大坝变形监测模型预测稳定、精度高,预报效果好.
展开更多
关键词
MIV算法
变量筛选
改进RBF神经网络
大坝变形监测模型
下载PDF
职称材料
题名
基于MIV-改进RBF神经网络的大坝变形监测模型
被引量:
4
1
作者
宁昕扬
刘晓青
机构
河海大学水利水电学院
出处
《三峡大学学报(自然科学版)》
CAS
2016年第3期1-5,共5页
基金
国家自然科学基金(51279050)
土石坝长效安全运行重大关键技术研究(201501033)
文摘
针对常规径向基函数(RBF)神经网络模型无法选择显著预报因子和易陷入局部最优解的问题,建立一种融合平均影响值(MIV)、改进果蝇算法(FOA)和RBF神经网络的大坝变形监测模型.通过引入MIV对水压、温度、时效三类预报因子进行筛选,并利用改进FOA算法获得RBF神经网络模型中最佳的spread值,以提高模型的稳定性和预报精度.为验证模型的有效性,以某混凝土重力坝位移监测数据为例,分别建立多元线性回归模型、常规RBF模型、MIV-RBF模型和MIV-改进RBF模型.研究结果表明MIV-改进RBF神经网络大坝变形监测模型预测稳定、精度高,预报效果好.
关键词
MIV算法
变量筛选
改进RBF神经网络
大坝变形监测模型
Keywords
mean
impact
value(MIV)
variable
selection
improved
radial
basis
function(RBF)neural
network
deformation
monitoring
model
of
dam
分类号
TV698 [水利工程—水利水电工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MIV-改进RBF神经网络的大坝变形监测模型
宁昕扬
刘晓青
《三峡大学学报(自然科学版)》
CAS
2016
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部