In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted ...In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.展开更多
The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon ...The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon monoxide poisoning with intermediates before the complete transformation of alcohol to CO_(2).Herein,we present hierarchical AgAu bimetallic nanoarchitectures for ethanol electrooxidation,which were fabricated via a partial galvanic reduction reaction between Ag and HAuCl_(4).The ethanol electrooxidation performance of the optimal AgAu nanohybrid was increased to 1834 mA mg^(‒1),which is almost 10 times higher than that of the pristine Au catalyst(190 mA mg^(‒1))in alkaline solutions.This was achieved by introducing Ag into the Au catalyst and controlling the time of the replacement reaction.The heterostructure also presents a higher current density than that of commercial Pt/C(1574 mA mg^(‒1)).Density functional theory calculations revealed that the enhanced activity and stability may stem from unavoidable defects on the surface of the integrated AgAu nanoarchitectures.Ethanol oxidation reactions over these defects are more energetically favorable,which facilitates the oxidative removal of carbonaceous poison and boosts the combination with radicals on adjacent Au active sites.展开更多
In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the singl...In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.展开更多
Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of in...Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of inclusions were found. In addition, the distribution of macro-inclusions in slabs was analyzed by MIDAS method. The results show the macroscopic inclusion bands of head slabs and normal slabs are in 1/8 slab thickness regions of both inner arc side and outer arc side. The formation process of the defects in the cold-rolled sheets was simulated with an experimental cold-rolling machine for comparison. The results show that there were three kinds of inclusions underneath the surface defects: Al2O3, SiO2 and particles from slag entrainment, which were the main reason for defect formation during cold rolling.展开更多
文摘In this study we present the design and realization of a tunable dual band wireless power transfer(TDB-WPT)coupled resonator system.The frequency response of the tunable band can be controlled using a surface-mounted varactor.The transmitter(Tx)and the receiver(Rx)circuits are symmetric.The top layer contains a feed line with an impedance of 50Ω.Two identical half rings defected ground structures(HR-DGSs)are loaded on the bottom using a varactor diode.We propose a solution for restricted WPT systems working at a single band application according to the operating frequency.The effects of geometry,orientation,relative distance,and misalignments on the coupling coefficients were studied.To validate the simulation results,the proposed TDB-WPT system was fabricated and tested.The system occupied a space of 40 mm×40 mm.It can deliver power to the receiver with an average coupling efficiency of 98%at the tuned band from 817 to 1018 MHz and an efficiency of 95%at a fixed band of 1.6 GHz at a significant transmission distance of 22 mm.The results of the measurements accorded well with those of an equivalent model and the simulation.
文摘The ethanol oxidation reaction is a significant anodic reaction for direct alcohol fuel cells.The most commonly used catalysts for this reaction are Pt‐based materials;however,Pt‐based electrocatalysts cause carbon monoxide poisoning with intermediates before the complete transformation of alcohol to CO_(2).Herein,we present hierarchical AgAu bimetallic nanoarchitectures for ethanol electrooxidation,which were fabricated via a partial galvanic reduction reaction between Ag and HAuCl_(4).The ethanol electrooxidation performance of the optimal AgAu nanohybrid was increased to 1834 mA mg^(‒1),which is almost 10 times higher than that of the pristine Au catalyst(190 mA mg^(‒1))in alkaline solutions.This was achieved by introducing Ag into the Au catalyst and controlling the time of the replacement reaction.The heterostructure also presents a higher current density than that of commercial Pt/C(1574 mA mg^(‒1)).Density functional theory calculations revealed that the enhanced activity and stability may stem from unavoidable defects on the surface of the integrated AgAu nanoarchitectures.Ethanol oxidation reactions over these defects are more energetically favorable,which facilitates the oxidative removal of carbonaceous poison and boosts the combination with radicals on adjacent Au active sites.
基金the financial support for this work by the National Natural Science Foundation of China (No.51235004 and No.51375235)the Fundamental Research Funds for the Central Universities (No.NE2014103)the Science and Technology Supporting Program of Jiangsu Province (No.BE2013109 and No.BY2014003-008)
文摘In order to develop the high-efficiency and precision machining technique of TiCp/Ti - 6Al-4V particulate reinforced titanium matrix composites (PTMCs), high-speed grinding experiments were conducted using the single-layer electroplated cubic boron nitride (CBN) wheel and brazed CBN wheel, respectively. The comparative grinding performance was studied in terms of grinding force, grinding temperature, grinding-induced surface features and defects. The results display that the grinding forces and grinding temperature obtained with the brazed CBN wheel are always lower than those with the electroplated CBN wheel. Though the voids and microcracks are the dominant grinding-induced surface defects, the brazed CBN wheel produces less surface defects compared to the electroplated wheel according to the statistical analysis results. The max mum materials removal rate with the brazed CBN wheel is much higher than that with the electroplated one. All above indicate that the single-layer brazed CBN super-abrasive wheel is more suitable for high-speed grinding of PTMCs than the electroplated counterpart.
文摘Surface defects of the cold-rolled sheets of Ti-IF steel were studied and analyzed. After analyzing surface defects of cold-rolled sheets, such as shelling defects, holes and sliver defects by SEM/EDS, a variety of inclusions were found. In addition, the distribution of macro-inclusions in slabs was analyzed by MIDAS method. The results show the macroscopic inclusion bands of head slabs and normal slabs are in 1/8 slab thickness regions of both inner arc side and outer arc side. The formation process of the defects in the cold-rolled sheets was simulated with an experimental cold-rolling machine for comparison. The results show that there were three kinds of inclusions underneath the surface defects: Al2O3, SiO2 and particles from slag entrainment, which were the main reason for defect formation during cold rolling.