期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
A Deep Collocation Method for the Bending Analysis of Kirchhoff Plate 被引量:81
1
作者 Hongwei Guo Xiaoying Zhuang Timon Rabczuk 《Computers, Materials & Continua》 SCIE EI 2019年第5期433-456,共24页
In this paper,a deep collocation method(DCM)for thin plate bending problems is proposed.This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning.Besides,the proposed... In this paper,a deep collocation method(DCM)for thin plate bending problems is proposed.This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning.Besides,the proposed DCM is based on a feedforward deep neural network(DNN)and differs from most previous applications of deep learning for mechanical problems.First,batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries.A loss function is built with the aim that the governing partial differential equations(PDEs)of Kirchhoff plate bending problems,and the boundary/initial conditions are minimised at those collocation points.A combination of optimizers is adopted in the backpropagation process to minimize the loss function so as to obtain the optimal hyperparameters.In Kirchhoff plate bending problems,the C^1 continuity requirement poses significant difficulties in traditional mesh-based methods.This can be solved by the proposed DCM,which uses a deep neural network to approximate the continuous transversal deflection,and is proved to be suitable to the bending analysis of Kirchhoff plate of various geometries. 展开更多
关键词 deep learning collocation method Kirchhoff plate higher-order PDEs
下载PDF
秩序的审美价值与当代建筑的美学追求 被引量:25
2
作者 石孟良 彭建国 汤放华 《建筑学报》 北大核心 2010年第4期16-19,共4页
通过对审美对象、审美价值和审美主体等美学概念的阐释,提出秩序是最易感悟和最具审美价值的审美对象;对比现、当代绘画艺术风格的嬗变,阐明了当代建筑基于深层秩序的美学追求,是审美层次循环递进的必然规律,并提出当代建筑美学的后续发... 通过对审美对象、审美价值和审美主体等美学概念的阐释,提出秩序是最易感悟和最具审美价值的审美对象;对比现、当代绘画艺术风格的嬗变,阐明了当代建筑基于深层秩序的美学追求,是审美层次循环递进的必然规律,并提出当代建筑美学的后续发展,是新一轮简单秩序(美的回归)。 展开更多
关键词 秩序 审美价值 嬗变 当代建筑 深层秩序
原文传递
深井开采回采顺序数值模拟优化研究 被引量:22
3
作者 刘晓明 杨承祥 罗周全 《南华大学学报(自然科学版)》 2008年第4期15-21,共7页
采用大型矿业软件Datamine构建了冬瓜山矿的地表、岩层、矿体及块段模型;研究了Datamine块段模型与Flac3D计算模型的数据结构、耦合模式及方法,成功地将块段模型转换成数值计算模型.针对冬瓜山深井缓倾斜矿体复杂的开采技术条件,并考虑... 采用大型矿业软件Datamine构建了冬瓜山矿的地表、岩层、矿体及块段模型;研究了Datamine块段模型与Flac3D计算模型的数据结构、耦合模式及方法,成功地将块段模型转换成数值计算模型.针对冬瓜山深井缓倾斜矿体复杂的开采技术条件,并考虑日产万吨生产能力和主要回采次序要求,设计了两种可行的回采顺序模拟方案,开展了冬瓜山深井开采回采顺序的数值模拟优化研究,分析了不同方案应力、位移和塑性区的分布规律,提出了优化的回采顺序方案. 展开更多
关键词 深井开采 回采顺序 FLAC3D Datamine 数值模拟
下载PDF
变工况滚动轴承故障诊断方法综述 被引量:16
4
作者 胡春生 李国利 +1 位作者 赵勇 成芳娟 《计算机工程与应用》 CSCD 北大核心 2022年第18期26-42,共17页
智能制造背景下,旋转机械工况更加复杂,运行条件更加严峻,设备的运行状态监测与故障诊断更加重要。变工况条件下,轴承振动信号存在幅值变、脉动冲击间隔、采样相位不恒定和信号噪声污染等特点,传统滚动轴承故障诊断方法的应用受到了限... 智能制造背景下,旋转机械工况更加复杂,运行条件更加严峻,设备的运行状态监测与故障诊断更加重要。变工况条件下,轴承振动信号存在幅值变、脉动冲击间隔、采样相位不恒定和信号噪声污染等特点,传统滚动轴承故障诊断方法的应用受到了限制。针对变工况条件下的轴承故障诊断技术,发展了以阶次跟踪、时频分析、随机振动以及混沌理论等人工提取特征的信号解调与分析方法、以卷积神经网络、自编码器与深度置信网络为代表的深度学习方法以及迁移学习方法。回顾近五年变工况轴承故障诊断领域的进展,从算法原理、算法优化以及算法实际应用等角度,详细介绍几种当前主流的变工况故障诊断方法,讨论各类算法的优势不足及适用场景,为后续的研究指明方向。 展开更多
关键词 变工况 故障诊断 深度学习 迁移学习 时频分析 阶次跟踪
下载PDF
深部矸石充填体黏弹性效应及顶板时效变形特征 被引量:11
5
作者 黄鹏 张吉雄 +2 位作者 郭宇鸣 李猛 张琪 《中国矿业大学学报》 EI CAS CSCD 北大核心 2021年第3期489-497,共9页
深部充填开采矸石充填体的黏弹性特征对顶板长时变形具有重要影响.采用矸石充填体侧限压缩试验系统测试了矸石充填体的黏弹性,建立了矸石充填体分数阶蠕变模型和分数阶蠕变地基梁模型,给出了分数阶黏弹性地基梁的挠度表达式,结合工程案... 深部充填开采矸石充填体的黏弹性特征对顶板长时变形具有重要影响.采用矸石充填体侧限压缩试验系统测试了矸石充填体的黏弹性,建立了矸石充填体分数阶蠕变模型和分数阶蠕变地基梁模型,给出了分数阶黏弹性地基梁的挠度表达式,结合工程案例分析了顶板时效变形特征,认为深部环境下矸石充填体具有显著黏弹性效应,而顶板会随充填体的蠕变不断产生变形,且其时效变形可采用矸石充填体分数阶黏弹性地基梁模型预测.结果表明:矸石充填体在分级加载下,总蠕变应变随蠕变时间和最大应力的增加而不断增长,应力达到20 MPa时,应变增幅为2.86%;识别了矸石充填体分数阶蠕变模型参数,参数识别精度R2均大于0.99;根据分数阶黏弹性地基梁挠度表达式计算得出顶板10 a蠕变量较1 a蠕变量在采场充填区中心位置增加2.73%;分数阶黏弹性地基梁顶板变形理论值与新巨龙1302N工作面直接顶下沉实测值相对误差为4.29%. 展开更多
关键词 深部开采 煤矸石 充填采煤 黏弹性 分数阶 时效变形
原文传递
人的科学如何可能——从方法论视角看列维-斯特劳斯的“结构” 被引量:6
6
作者 王立志 《自然辩证法研究》 CSSCI 北大核心 2009年第12期22-26,共5页
列维-斯特劳斯的结构分析融合了数学、物理学、人类学、语言学、精神分析学的成果,为我们透视人文世界打开了一扇门。他的结构分析不仅是共时的、静态的,也是动态的、历时的。列维-斯特劳斯结构主义的符号学倾向体现了诗性智慧、感性的... 列维-斯特劳斯的结构分析融合了数学、物理学、人类学、语言学、精神分析学的成果,为我们透视人文世界打开了一扇门。他的结构分析不仅是共时的、静态的,也是动态的、历时的。列维-斯特劳斯结构主义的符号学倾向体现了诗性智慧、感性的逻辑在研究人文世界时的重要性,通过对物理学、人文科学、语言学结构内涵的分析,展示结构概念深广的思想渊源,以及不同研究领域在思考方式上的相互影响和共通之处,从而深入理解列维-斯特劳斯要建立"爱因斯坦相对论一样的人的科学"的真正涵义,显示了结构主义和符号学的思维方式和分析方法是理解我们生活的、充满了符号的、现实世界的核心原则。 展开更多
关键词 结构 诗性智慧 关系模式 深层秩序
原文传递
移动互联网在医学教学应用中存在的问题及对策 被引量:6
7
作者 岳梅 张叶江 《中国继续医学教育》 2020年第5期71-73,共3页
移动互联网(mobile internet)是以移动网络作为接入网络的互联网及服务,它包括移动终端、移动网络和应用服务三大要素。与PC互联网相比,移动互联网具有网络覆盖好、终端携带易、应用范围广、互动性更强等特征,目前已广泛应用于医学课程... 移动互联网(mobile internet)是以移动网络作为接入网络的互联网及服务,它包括移动终端、移动网络和应用服务三大要素。与PC互联网相比,移动互联网具有网络覆盖好、终端携带易、应用范围广、互动性更强等特征,目前已广泛应用于医学课程教学中,并取得了显著成绩。与此同时,移动互联网也带来了诸如内容质量欠佳、深度阅读不足和干扰教学秩序等弊端,需要通过科学规划知识体系、提升学生信息素养和主动拥抱技术创新等手段,不断提升医学教学质量。在未来,以5G、4K/8K和AR/VR等为代表的移动互联网新技术,将在医学课程O2O教学、还原真实案例教学和促进优质资源共享等方面发挥更加重要的作用。 展开更多
关键词 移动互联网 医学教学 应用现状 问题 对策 深度阅读 教学秩序 教学管理
下载PDF
A Deep Reinforcement Learning Algorithm for the Power Order Optimization Allocation of AGC in Interconnected Power Grids 被引量:6
8
作者 Lei Xi Lipeng Zhou +4 位作者 Lang Liu Dongliang Duan Yanchun Xu Liuqing Yang Shouxiang Wang 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第3期712-723,共12页
The integration of distributed generations(solar power,wind power),energy storage devices,and electric vehicles,causes unpredictable disturbances in power grids.It has become a top priority to coordinate the distribut... The integration of distributed generations(solar power,wind power),energy storage devices,and electric vehicles,causes unpredictable disturbances in power grids.It has become a top priority to coordinate the distributed generations,loads,and energy storages in order to better facilitate the utilization of new energy.Therefore,a novel algorithm based on deep reinforcement learning,namely the deep PDWoLF-PHC(policy dynamics based win or learn fast-policy hill climbing)network(DPDPN),is proposed to allocate power order among the various generators.The proposed algorithm combines the decision mechanism of reinforcement learning with the prediction mechanism of a deep neural network to obtain the optimal coordinated control for the source-grid-load.Consequently it solves the problem brought by stochastic disturbances and improves the utilization rate of new energy.Simulations are conducted with the case of the improved IEEE two-area and a case in the Guangdong power grid.Results show that the adaptability and control performance of the power system are improved using the proposed algorithm as compared with using other existing strategies. 展开更多
关键词 Automatic generation control deep reinforcement learning DPDPN power order allocation
原文传递
“分享的律令”:数据化浪潮下社会秩序的重构
9
作者 何秋红 陈新毅 《传媒观察》 CSSCI 2024年第3期75-80,共6页
数据化浪潮的发展使得媒介以基础设施的姿态渗透进社会的各个方面,社会在本体论意义上变得“中介化”。当一切变得中介化时,对于社会学的经典命题——“人类如何建构社会世界”的回答自然需要重新调整。尼克·库尔德利和安德烈亚斯&... 数据化浪潮的发展使得媒介以基础设施的姿态渗透进社会的各个方面,社会在本体论意义上变得“中介化”。当一切变得中介化时,对于社会学的经典命题——“人类如何建构社会世界”的回答自然需要重新调整。尼克·库尔德利和安德烈亚斯·赫普合著的《现实的中介化建构》一书系统性地阐释了深度媒介化理论的核心概念;在广泛的历史维度内揭示了社会、媒介和传播各个层面的关系;深入地探讨了社会的中介化对于社会空间、时间、数据三个维度的影响;详尽地分析了深度媒介化时代自我、集体面临的秩序问题;发人深省地总结了深度媒介化时代的三大后果,在《现实的社会建构:知识社会学论纲》的基础上“接着说”,为媒介化研究引入了知识社会学的理论资源,具有很高的学术价值。 展开更多
关键词 深度媒介化 社会秩序 数据化 现实的社会建构
原文传递
Stall flutter prediction based on multi-layer GRU neural network 被引量:2
10
作者 Yuting DAI Haoran RONG +2 位作者 You WU Chao YANG Yuntao XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第1期75-90,共16页
The modeling of dynamic stall aerodynamics is essential to stall flutter, due to the flow separation in a large-amplitude pitching oscillation process. A newly neural network based Reduced Order Model(ROM) framework f... The modeling of dynamic stall aerodynamics is essential to stall flutter, due to the flow separation in a large-amplitude pitching oscillation process. A newly neural network based Reduced Order Model(ROM) framework for predicting the aerodynamic forces of an airfoil undergoing large-amplitude pitching oscillation at various velocities is presented in this work. First, the dynamic stall aerodynamics is calculated by solving RANS equations and the transitional SST-γ model. Afterwards, the stall flutter bifurcation behavior is calculated by the above CFD solver coupled with structural dynamic equation. The critical flutter speed and limit-cycle oscillation amplitudes are consistent with those obtained by experiments. A newly multi-layer Gated Recurrent Unit(GRU) neural network based ROM is constructed to accelerate the calculation of aerodynamic forces. The training and validation process are carried out upon the unsteady aerodynamic data obtained by the proposed CFD method. The well-trained ROM is then coupled with the structure equation at a specific velocity, the Limit-Cycle Oscillation(LCO) of stall flutter under this flow condition is predicted precisely and more quickly. In order to predict both the critical flutter velocity and LCO amplitudes after bifurcation at different velocities, a new ROM with GRU neural network considering the variation of flow velocities is developed. The stall flutter results predicted by ROM agree well with the CFD ones at different velocities. Finally, a brief sensitivity analysis of two structural parameters of ROM is carried out. It infers the potential of the presented modeling method to depict the nonlinearity of dynamic stall and stall flutter phenomenon. 展开更多
关键词 deep learning Dynamic stall Limit-cycle oscillation Reduced order model Stall flutter
原文传递
A Local Deep Learning Method for Solving High Order Partial Differential Equations 被引量:1
11
作者 Jiang Yang Quanhui Zhu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2022年第1期42-67,共26页
At present, deep learning based methods are being employed to resolvethe computational challenges of high-dimensional partial differential equations(PDEs). But the computation of the high order derivatives of neural n... At present, deep learning based methods are being employed to resolvethe computational challenges of high-dimensional partial differential equations(PDEs). But the computation of the high order derivatives of neural networks iscostly, and high order derivatives lack robustness for training purposes. We proposea novel approach to solving PDEs with high order derivatives by simultaneously approximating the function value and derivatives. We introduce intermediate variablesto rewrite the PDEs into a system of low order differential equations as what is donein the local discontinuous Galerkin method. The intermediate variables and the solutions to the PDEs are simultaneously approximated by a multi-output deep neuralnetwork. By taking the residual of the system as a loss function, we can optimizethe network parameters to approximate the solution. The whole process relies onlow order derivatives. Numerous numerical examples are carried out to demonstrate that our local deep learning is efficient, robust, flexible, and is particularlywell-suited for high-dimensional PDEs with high order derivatives. 展开更多
关键词 deep learning deep neural network high order PDEs reduction of order deep Galerkin method
原文传递
当代城市建筑的美学秩序 被引量:2
12
作者 石孟良 高盛 《城市问题》 CSSCI 北大核心 2010年第10期12-15,22,共5页
美是客观审美对象所具有的审美价值满足审美主体(人)的审美需要时,审美主体在审美过程中所获得的愉悦感受;秩序是最具审美价值的审美对象,秩序的形式蕴含审美对象的客观美,秩序的嬗变体现审美主体(人类)不断探索的智慧美;在经历了现代... 美是客观审美对象所具有的审美价值满足审美主体(人)的审美需要时,审美主体在审美过程中所获得的愉悦感受;秩序是最具审美价值的审美对象,秩序的形式蕴含审美对象的客观美,秩序的嬗变体现审美主体(人类)不断探索的智慧美;在经历了现代建筑美学秩序从简单到变化的探索之后,当代建筑美学的追求发生了历史性的变革,开始探索一种富有非线性特征的,更能体现人类智慧的深层美学秩序。 展开更多
关键词 当代 城市建筑 秩序 审美价值 深层秩序
原文传递
FOLMS-AMDCNet:an automatic recognition scheme for multiple-antenna OFDM systems 被引量:1
13
作者 ZHANG Yuyuan YAN Wenjun +1 位作者 ZHANG Limin LING Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期307-323,共17页
The existing recognition algorithms of space-time block code(STBC)for multi-antenna(MA)orthogonal frequencydivision multiplexing(OFDM)systems use feature extraction and hypothesis testing to identify the signal types ... The existing recognition algorithms of space-time block code(STBC)for multi-antenna(MA)orthogonal frequencydivision multiplexing(OFDM)systems use feature extraction and hypothesis testing to identify the signal types in a complex communication environment.However,owing to the restrictions on the prior information and channel conditions,these existing algorithms cannot perform well under strong interference and noncooperative communication conditions.To overcome these defects,this study introduces deep learning into the STBCOFDM signal recognition field and proposes a recognition method based on the fourth-order lag moment spectrum(FOLMS)and attention-guided multi-scale dilated convolution network(AMDCNet).The fourth-order lag moment vectors of the received signals are calculated,and vectors are stitched to form two-dimensional FOLMS,which is used as the input of the deep learning-based model.Then,the multi-scale dilated convolution is used to extract the details of images at different scales,and a convolutional block attention module(CBAM)is introduced to construct the attention-guided multi-scale dilated convolution module(AMDCM)to make the network be more focused on the target area and obtian the multi-scale guided features.Finally,the concatenate fusion,residual block and fully-connected layers are applied to acquire the STBC-OFDM signal types.Simulation experiments show that the average recognition probability of the proposed method at−12 dB is higher than 98%.Compared with the existing algorithms,the recognition performance of the proposed method is significantly improved and has good adaptability to environments with strong disturbances.In addition,the proposed deep learning-based model can directly identify the pre-processed FOLMS samples without a priori information on channel and noise,which is more suitable for non-cooperative communication systems than the existing algorithms. 展开更多
关键词 blind signal identification(BSI) space-time block code(STBC) orthogonal frequency-division multiplexing(OFDM) deep learning fourth-order lag moment spectrum(FOLMS)
下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
14
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
A deep learning method for solving high-order nonlinear soliton equations 被引量:1
15
作者 Shikun Cui Zhen Wang +2 位作者 Jiaqi Han Xinyu Cui Qicheng Meng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第7期57-69,共13页
We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equa... We propose an effective scheme of the deep learning method for high-order nonlinear soliton equations and explore the influence of activation functions on the calculation results for higherorder nonlinear soliton equations. The physics-informed neural networks approximate the solution of the equation under the conditions of differential operator, initial condition and boundary condition. We apply this method to high-order nonlinear soliton equations, and verify its efficiency by solving the fourth-order Boussinesq equation and the fifth-order Korteweg–de Vries equation. The results show that the deep learning method can be used to solve high-order nonlinear soliton equations and reveal the interaction between solitons. 展开更多
关键词 deep learning method physics-informed neural networks high-order nonlinear soliton equations interaction between solitons the numerical driven solution
原文传递
A simplified model for extreme-wave kinematics in deep sea 被引量:1
16
作者 滕斌 宁德志 《Journal of Marine Science and Application》 2009年第1期27-32,共6页
Based on the fifth-order Stokes regular wave theory, a simplified model for extreme-wave kinematics in deep sea was developed. In this model, from the wave records the average of two neighboring wave periods for the e... Based on the fifth-order Stokes regular wave theory, a simplified model for extreme-wave kinematics in deep sea was developed. In this model, from the wave records the average of two neighboring wave periods for the extreme crest or trough was defined as the period of the Stokes wave by the up and down zero-crossing methods. Then the input wave amplitude was deduced by substituting the wave period and extreme crest or trough into the expression for the fifth-order Stokes wave elevation. Thus the corresponding formula for the wave velocity can be used to describe kinematics beneath the extreme wave. By comparison with the published numerical models and experimental data, the proposed model is validated to be able to calculate the extreme wave velocity rather easily and accurately. 展开更多
关键词 extreme wave deep sea fifth-order Stokes regular wave KINEMATICS velocity field
下载PDF
High Order Deep Domain Decomposition Method for Solving High Frequency Interface Problems
17
作者 Zhipeng Chang Ke Li +1 位作者 Xiufen Zou Xueshuang Xiang 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第6期1602-1630,共29页
This paper proposes a high order deep domain decomposition method(HOrderDeepDDM)for solving high-frequency interface problems,which combines high order deep neural network(HOrderDNN)with domain decomposition method(DD... This paper proposes a high order deep domain decomposition method(HOrderDeepDDM)for solving high-frequency interface problems,which combines high order deep neural network(HOrderDNN)with domain decomposition method(DDM).The main idea of HOrderDeepDDM is to divide the computational domain into some sub-domains by DDM,and apply HOrderDNNs to solve the high-frequency problem on each sub-domain.Besides,we consider an adaptive learning rate annealing method to balance the errors inside the sub-domains,on the interface and the boundary during the optimization process.The performance of HOrderDeepDDM is evaluated on high-frequency elliptic and Helmholtz interface problems.The results indicate that:HOrderDeepDDM inherits the ability of DeepDDM to handle discontinuous interface problems and the power of HOrderDNN to approximate high-frequency problems.In detail,HOrderDeepDDMs(p>1)could capture the high-frequency information very well.When compared to the deep domain decomposition method(DeepDDM),HOrderDeepDDMs(p>1)converge faster and achieve much smaller relative errors with the same number of trainable parameters.For example,when solving the high-frequency interface elliptic problems in Section 3.3.1,the minimum relative errors obtained by HOrderDeepDDMs(p=9)are one order of magnitude smaller than that obtained by DeepDDMs when the number of the parameters keeps the same,as shown in Fig.4. 展开更多
关键词 deep neural network high order methods high-frequency interface problems do-main decomposition method
原文传递
一种基于端点顺序预测的手写体笔画恢复方法 被引量:1
18
作者 张瑞 湛永松 杨明浩 《计算机科学》 CSCD 北大核心 2019年第S11期264-267,共4页
针对汉字手写体的笔画动态序列恢复问题,文中提出了一种基于端点顺序预测的手写体笔画顺序恢复模型。首先对经过数字化处理后的手写体图像进行细化、笔画片段分割、图像坐标提取和规整等预处理,然后利用预处理后的图像和对应的书写坐标... 针对汉字手写体的笔画动态序列恢复问题,文中提出了一种基于端点顺序预测的手写体笔画顺序恢复模型。首先对经过数字化处理后的手写体图像进行细化、笔画片段分割、图像坐标提取和规整等预处理,然后利用预处理后的图像和对应的书写坐标序列生成网络训练的样本,样本由静态手写体图像和包含字体书写顺序的热力图标签组成,该模型采用一种端到端的卷积神经网络结构,最后使用训练好的网络模型对静态手写体图像进行预测,从而得到字体原先的书写顺序。实验结果表明,该方法能够有效地对5笔以内的手写字体进行书写顺序的恢复,具有较高的准确率和处理速度。 展开更多
关键词 手写字体 时序信息 深度学习 笔画恢复 卷积神经网络
下载PDF
Abiotic Hydrocarbons Generation Simulated by Fischer-Tropsch Synthesis under Hydrothermal Conditions in Ultradeep Basins 被引量:1
19
作者 ZHAO Zhongfeng LIU Xinran +1 位作者 LU Hong Peng Ping’an 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1331-1341,共11页
FTT experiments with water as a hydrogen source and three types of possible carbon sources in the subsurface(diiron nonacarbonyl,siderite and formic acid,representing CO,CO_(2)and a simple organic acid,respectively)we... FTT experiments with water as a hydrogen source and three types of possible carbon sources in the subsurface(diiron nonacarbonyl,siderite and formic acid,representing CO,CO_(2)and a simple organic acid,respectively)were carried out in this study.Our experimental results showed that n-alkanes with the highest carbon number of C_(33)were produced when CO was used as a carbon source(series A);a variety of polycyclic aromatic hydrocarbons(PAHs)were detected in series B with CO_(2)as a carbon source;gaseous hydrocarbons were also detected with formic acid added(series C).The different products in the three series showed that there were different hydrocarbon generation mechanisms and reaction processes with different carbon sources.The generation of long-chain n-alkanes in series A provided experimental support for the formation of abiogenic petroleum underground,which was of significance to early membranes on the Earth.PAHs in series B provide experimental support for the possibility of an abiotic source of reduced carbon on other planets.The carbon isotopes of gaseous hydrocarbons produced by CO exhibited a partial reversed order(δ^(13)C_(1)<δ^(13)C_(2)>δ^(13)C_(3)>δ^(13)C_(4)>δ^(13)C_(5)),while the gaseous hydrocarbons produced by CO_(2)and HCOOH showed a positive order(δ^(13)C_(1)<δ^(13)C_(2)<δ^(13)C_(3)<δ^(13)C_(4)<δ^(13)C_(5)).Based on these,the alkylene mechanism and the carbonyl insertion mechanism were used to reasonably explain these characteristics. 展开更多
关键词 ultra-deep basin FTT carbon isotope reversed order abiogenic hydrocarbons hydrothermal experiments
下载PDF
High Order Deep Neural Network for Solving High Frequency Partial Differential Equations 被引量:1
20
作者 Zhipeng Chang Ke Li +1 位作者 Xiufen Zou Xueshuang Xiang 《Communications in Computational Physics》 SCIE 2022年第2期370-397,共28页
This paper proposes a high order deep neural network(HOrderDNN)for solving high frequency partial differential equations(PDEs),which incorporates the idea of“high order”from finite element methods(FEMs)into commonly... This paper proposes a high order deep neural network(HOrderDNN)for solving high frequency partial differential equations(PDEs),which incorporates the idea of“high order”from finite element methods(FEMs)into commonly-used deep neural networks(DNNs)to obtain greater approximation ability.The main idea of HOrderDNN is introducing a nonlinear transformation layer between the input layer and the first hidden layer to form a high order polynomial space with the degree not exceeding p,followed by a normal DNN.The order p can be guided by the regularity of solutions of PDEs.The performance of HOrderDNNis evaluated on high frequency function fitting problems and high frequency Poisson and Helmholtz equations.The results demonstrate that:HOrderDNNs(p>1)can efficiently capture the high frequency information in target functions;and when compared to physics-informed neural network(PINN),HOrderDNNs(p>1)converge faster and achieve much smaller relative errors with same number of trainable parameters.In particular,when solving the high frequency Helmholtz equation in Section 3.5,the relative error of PINN stays around 1 with its depth and width increase,while the relative error can be reduced to around 0.02 as p increases(see Table 5). 展开更多
关键词 deep neural network high order methods high frequency PDEs
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部