Cracking behaviors of rocks significantly affect the safety and stability of the explorations of underground space and deep resources.To understand deeply the microscopic cracking process and mechanical property of ro...Cracking behaviors of rocks significantly affect the safety and stability of the explorations of underground space and deep resources.To understand deeply the microscopic cracking process and mechanical property of rocks,X-ray micro-computed tomography(X-μCT)is applied to capture the rock microstructures.The digital color difference UNet(DCD-UNet)-based deep learning algorithm with 3D reconstruction is proposed to reconstruct the multiphase heterogeneity microstructure models of rocks.The microscopic cracking and mechanical properties are studied based on the proposed microstructure-based peridynamic model.Results show that the DCD-UNet algorithm is more effective to recognize and to represent the microscopic multiphase heterogeneity of rocks.As damage characteristic index of multiphase rocks increases,transgranular cracks in the same grain phase,transgranular and intergranular cracks of pore-grain phase,intergranular and secondary transgranular cracks and transgranular crack between different grains propagate.The ultimate microscopic failure modes of rocks are mainly controlled by the transgranular cracks-based T1-shear,T3-shear,T1-tension,T2-tension and T3-tension failures,and the intergranular cracks-based T1-tension,T1-shear and T3-shear failures under uniaxial compression.展开更多
Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-in...Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.展开更多
水平连铸法生产Φ100 mm TP2铜管坯时,存在表面出现深裂纹和皮下气孔的质量缺陷。以其企业为例,通过对其存在的质量缺陷进行研究分析,并对生产工艺进行改进后,解决了相关问题:通过缩小石墨模具进液孔,可以避免铜管坯表面出现深裂纹,提...水平连铸法生产Φ100 mm TP2铜管坯时,存在表面出现深裂纹和皮下气孔的质量缺陷。以其企业为例,通过对其存在的质量缺陷进行研究分析,并对生产工艺进行改进后,解决了相关问题:通过缩小石墨模具进液孔,可以避免铜管坯表面出现深裂纹,提高模具寿命;通过提高铜液质量,可以有效减少铜管坯的气孔缺陷数量。改进生产工艺后,铜管成品率可从57.6%提高至81.3%。展开更多
基金supported by the National Natural Science Foundation of China(Nos.42207193,52027814,and 51839009)the Natural Science Foundation of Hubei Province(No.2022CFB609)+1 种基金the National Center for International Research on Deep Earth Drilling and Resource Development(No.DEDRD-2022-07)the Fundamental Research Funds for the Central Universities(No.2042021kf0058)。
文摘Cracking behaviors of rocks significantly affect the safety and stability of the explorations of underground space and deep resources.To understand deeply the microscopic cracking process and mechanical property of rocks,X-ray micro-computed tomography(X-μCT)is applied to capture the rock microstructures.The digital color difference UNet(DCD-UNet)-based deep learning algorithm with 3D reconstruction is proposed to reconstruct the multiphase heterogeneity microstructure models of rocks.The microscopic cracking and mechanical properties are studied based on the proposed microstructure-based peridynamic model.Results show that the DCD-UNet algorithm is more effective to recognize and to represent the microscopic multiphase heterogeneity of rocks.As damage characteristic index of multiphase rocks increases,transgranular cracks in the same grain phase,transgranular and intergranular cracks of pore-grain phase,intergranular and secondary transgranular cracks and transgranular crack between different grains propagate.The ultimate microscopic failure modes of rocks are mainly controlled by the transgranular cracks-based T1-shear,T3-shear,T1-tension,T2-tension and T3-tension failures,and the intergranular cracks-based T1-tension,T1-shear and T3-shear failures under uniaxial compression.
基金Project(2021JJ10063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(202115)supported by the Science and Technology Progress and Innovation Project of Hunan Provincial Department of Transportation,ChinaProject(2021K094-Z)supported by the Science and Technology Research and Development Program of China Railway Guangzhou Group Co.,Ltd。
文摘Blasting-induced cracks in the rock surrounding deeply buried tunnels can result in water gushing and rock mass collapse,posing significant safety risks.However,previous theoretical studies on the range of blasting-induced cracks often ignore the impact of the in-situ stress,especially that of the intermediate principal stress.The particle displacement−crack radius relationship was established in this paper by utilizing the blasthole cavity expansion equation,and theoretical analytical formulas of the stress−displacement relationship and the crack radius were derived with unified strength theory to accurately assess the range of cracks in deep surrounding rock under a blasting load.Parameter analysis showed that the crushing zone size was positively correlated with in-situ stress,intermediate principal stress,and detonation pressure,whereas negatively correlated with Poisson ratio and decoupling coefficient.The dilatancy angle-crushing zone size relationship exhibited nonmonotonic behavior.The relationships in the crushing zone and the fracture zone exhibited opposite trends under the influence of only in-situ stress or intermediate principal stress.As the in-situ stress increased from 0 to 70 MPa,the rate of change in the crack range and the attenuation rate of the peak vibration velocity gradually slowed.
文摘水平连铸法生产Φ100 mm TP2铜管坯时,存在表面出现深裂纹和皮下气孔的质量缺陷。以其企业为例,通过对其存在的质量缺陷进行研究分析,并对生产工艺进行改进后,解决了相关问题:通过缩小石墨模具进液孔,可以避免铜管坯表面出现深裂纹,提高模具寿命;通过提高铜液质量,可以有效减少铜管坯的气孔缺陷数量。改进生产工艺后,铜管成品率可从57.6%提高至81.3%。