专用短程通信(Dedicated Short Range Communication,DSRC)是车联网的主要技术之一,针对DSRC测试评价的需求,在封闭测试场环境下构建了多个典型车联网应用场景。制定了详细的测试方案,以丢包率(PacketLoss Rate,PLR)和时延(Delay,DE)为...专用短程通信(Dedicated Short Range Communication,DSRC)是车联网的主要技术之一,针对DSRC测试评价的需求,在封闭测试场环境下构建了多个典型车联网应用场景。制定了详细的测试方案,以丢包率(PacketLoss Rate,PLR)和时延(Delay,DE)为评价指标,测试分析了速度、距离、遮蔽物等因素对DSRC通信性能的影响。测试结果表明,通信距离和遮蔽物是造成DSRC通信性能下降的主要因素。展开更多
Recently,the importance of vehicle safety supporting system has been highlighted as autonomous driving and platooning has attracted the researchers.To ensure driving safety,each vehicle must broadcast a basic safety m...Recently,the importance of vehicle safety supporting system has been highlighted as autonomous driving and platooning has attracted the researchers.To ensure driving safety,each vehicle must broadcast a basic safety message(BSM)every 100 ms.However,stable BSM exchange is difficult because of the changing environment and limited bandwidth of vehicular wireless communication.The increasing number of vehicles on the road increases the competition to access wireless networks for BSM exchange;this increases the packet collision rate.An increased packet collision rate impairs the transmission and reception of BSM information,which can easily cause a traffic accident.We propose a solution,the vehicular safety support system(V3S),which exchanges BSMs reliably even when many vehicles are on the road.The V3S uses a clustering scheme to decrease network traffic by reducing the amount of data exchanged between a vehicle and the roadside unit(RSU).In addition,the V3S reduces the collision rate of wireless network packets by broadcasting the vehicle’s BSM in an allocated timeslot using the time division multiple access(TDMA)MAC protocol.The V3S also deals with insufficient bandwidth for dedicated short-range communications(DSRC)by changing DSRC channels according to traffic flow.In evaluating the packet error rate for stable BSM packet delivery,the V3S demonstrates an excellent packet error rate of less than 1%,compared to the 802.11p with its packet error rate of 82%.展开更多
Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so ...Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.展开更多
Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication net...Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.展开更多
文摘专用短程通信(Dedicated Short Range Communication,DSRC)是车联网的主要技术之一,针对DSRC测试评价的需求,在封闭测试场环境下构建了多个典型车联网应用场景。制定了详细的测试方案,以丢包率(PacketLoss Rate,PLR)和时延(Delay,DE)为评价指标,测试分析了速度、距离、遮蔽物等因素对DSRC通信性能的影响。测试结果表明,通信距离和遮蔽物是造成DSRC通信性能下降的主要因素。
基金This work was supported in part by the Chung-Ang University Research Grants in 2019,and in part by R&D Program for Forest Science Technology(Project No.“2021338C10-2123-CD02)provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Recently,the importance of vehicle safety supporting system has been highlighted as autonomous driving and platooning has attracted the researchers.To ensure driving safety,each vehicle must broadcast a basic safety message(BSM)every 100 ms.However,stable BSM exchange is difficult because of the changing environment and limited bandwidth of vehicular wireless communication.The increasing number of vehicles on the road increases the competition to access wireless networks for BSM exchange;this increases the packet collision rate.An increased packet collision rate impairs the transmission and reception of BSM information,which can easily cause a traffic accident.We propose a solution,the vehicular safety support system(V3S),which exchanges BSMs reliably even when many vehicles are on the road.The V3S uses a clustering scheme to decrease network traffic by reducing the amount of data exchanged between a vehicle and the roadside unit(RSU).In addition,the V3S reduces the collision rate of wireless network packets by broadcasting the vehicle’s BSM in an allocated timeslot using the time division multiple access(TDMA)MAC protocol.The V3S also deals with insufficient bandwidth for dedicated short-range communications(DSRC)by changing DSRC channels according to traffic flow.In evaluating the packet error rate for stable BSM packet delivery,the V3S demonstrates an excellent packet error rate of less than 1%,compared to the 802.11p with its packet error rate of 82%.
基金This work was supported in part by the Chung-Ang University Research Scholarship Grants in 2021,and in part by R&D Program for Forest Science Technology(Project No.“2021338B10-2223-CD02)provided by Korea Forest Service(Korea Forestry Promotion Institute).
文摘Autonomous platooning technology is regarded as one of the promising technologies for the future and the research is conducted actively.The autonomous platooning task generally requires highly complex computations so it is difficult to process only with the vehicle’s processing units.To solve this problem,there are many studies on task offloading technique which transfers complex tasks to their neighboring vehicles or computation nodes.However,the existing task offloading techniques which mainly use learning-based algorithms are difficult to respond to the real-time changing road environment due to their complexity.They are also challenging to process computation tasks within 100 ms which is the time limit for driving safety.In this paper,we propose a novel offloading scheme that can support autonomous platooning tasks being processed within the limit and ensure driving safety.The proposed scheme can handle computation tasks by considering the communication bandwidth,delay,and amount of computation.We also conduct simulations in the highway environment to evaluate the existing scheme and the proposed scheme.The result shows that our proposed scheme improves the utilization of nearby computing nodes,and the offloading tasks can be processed within the time for driving safety.
文摘Internet of things is deemed as the one of the great revolution after the age of Industrial Revolution.With the development of the communication technology,more and more entities are connected to the communication network and become one of the elements in the network.Over recent decades,in the area of intelligent transportation,pedestrian and transport infrastructure are connected to the communication network to improve the driving safety and traffic efficiency which is known as the ICV(Intelligent Connected Vehicle).This paper summarizes the global ICV progresses in the past decades and the latest activities of ICV in China,and introduces various aspects regarding the recent development of the ICV,including industry development,spectrum and standard,at the same time.