In this paper we discuss the following mathematical model I: where f(x) =, ai and bj(i = 1,2,...,m;j = 1, 2,…,n) are nonnegative integers satisfying The decision theorems for the optimal solutions to model I are give...In this paper we discuss the following mathematical model I: where f(x) =, ai and bj(i = 1,2,...,m;j = 1, 2,…,n) are nonnegative integers satisfying The decision theorems for the optimal solutions to model I are given. Besides, a procedure of the algorithm is established for finding an optimal solution to model I. At last, a typical example is listed.展开更多
函数单向S-粗集对偶(dual of function one direction singular rough set),具有单向动态特性和规律特性;它是函数S-粗集(function singular rough set)的基本形式之一。函数S-粗集是在改进S-粗集的基础上提出的。利用函数单向S-粗集对...函数单向S-粗集对偶(dual of function one direction singular rough set),具有单向动态特性和规律特性;它是函数S-粗集(function singular rough set)的基本形式之一。函数S-粗集是在改进S-粗集的基础上提出的。利用函数单向S-粗集对偶的动态特性和规律特性,给出-f-规律,-f-规律的属性特征,属性距离,-f-冗余规律概念。利用这些概念,提出规律与它的-f-属性控制,并给出-f-属性控制定理,-f-属性控制判定定理,-f-属性控制识别准则与应用。展开更多
文摘In this paper we discuss the following mathematical model I: where f(x) =, ai and bj(i = 1,2,...,m;j = 1, 2,…,n) are nonnegative integers satisfying The decision theorems for the optimal solutions to model I are given. Besides, a procedure of the algorithm is established for finding an optimal solution to model I. At last, a typical example is listed.
文摘函数单向S-粗集对偶(dual of function one direction singular rough set),具有单向动态特性和规律特性;它是函数S-粗集(function singular rough set)的基本形式之一。函数S-粗集是在改进S-粗集的基础上提出的。利用函数单向S-粗集对偶的动态特性和规律特性,给出-f-规律,-f-规律的属性特征,属性距离,-f-冗余规律概念。利用这些概念,提出规律与它的-f-属性控制,并给出-f-属性控制定理,-f-属性控制判定定理,-f-属性控制识别准则与应用。