Research works in the recent past have revealed three major biodegradation processes leading to the degradation of trichloroethylene. Reductive dechlorination is an anaerobic process in which chlorinated ethenes are u...Research works in the recent past have revealed three major biodegradation processes leading to the degradation of trichloroethylene. Reductive dechlorination is an anaerobic process in which chlorinated ethenes are used as electron acceptors. On the other hand, cometabolism requires oxygen for enzymatic degradation of chlorinated ethenes, which however yields no benefit for the bacteria involved. The third process is direct oxidation under aerobic conditions whereby chlorinated ethenes are directly used as electron donors by microorganisms. This review presented the current research trend in understanding biodegradation mechanisms with regard to their field applications. All the techniques used are evaluated, with the focus being on various factors that influence the process and the outcome.展开更多
Nanoscale bimetallic Ni/Fe particles were synthesized from the reaction of sodium borohydride (NaBH4) with reduction of Ni^2+ and Fe^2+ in aqueous solution. The obtained Ni/Fe particles were characterized by TEM ...Nanoscale bimetallic Ni/Fe particles were synthesized from the reaction of sodium borohydride (NaBH4) with reduction of Ni^2+ and Fe^2+ in aqueous solution. The obtained Ni/Fe particles were characterized by TEM (transmission electron microscope), XRD (X-ray diffractometer), and N2-BET. The dechlorination activity of the Ni/Fe was investigated using p-chlorophenol (p-CP) as a probe agent. Results demonstrated that the nanoscale Ni/Fe could effectively dechlorinate p-CP at relatively low metal to solution ratio of 0.4 g/L (Ni 5 wt%). The target with initial concentration ofp-CP 0.625 mmol/L was dechlorinted completely in 60 rain under ambient temperature and pressure. Factors affecting dechlorination efficiency, including reaction temperature, pH, Ni loading percentage over Fe, and metal to solution ratio, were investigated. The possible mechanism of dechlorination ofp-CP was proposed and discussed. The pseudo-first- order reaction took place on the surface of the Ni/Fe bimetallic particles, and the activation energy of the dechlorination reaction was determined to be 21.2 kJ/mol at the temperature rang of 287-313 K.展开更多
基金support of the experimental tasks for the Savannah River Operations Office under grant No.DE-RP0902SR22229
文摘Research works in the recent past have revealed three major biodegradation processes leading to the degradation of trichloroethylene. Reductive dechlorination is an anaerobic process in which chlorinated ethenes are used as electron acceptors. On the other hand, cometabolism requires oxygen for enzymatic degradation of chlorinated ethenes, which however yields no benefit for the bacteria involved. The third process is direct oxidation under aerobic conditions whereby chlorinated ethenes are directly used as electron donors by microorganisms. This review presented the current research trend in understanding biodegradation mechanisms with regard to their field applications. All the techniques used are evaluated, with the focus being on various factors that influence the process and the outcome.
基金Project supported by the National Basic Research Program (973) of China(No. 2003CB415006)the National Natural Science Foundation of China (No. 20337020)
文摘Nanoscale bimetallic Ni/Fe particles were synthesized from the reaction of sodium borohydride (NaBH4) with reduction of Ni^2+ and Fe^2+ in aqueous solution. The obtained Ni/Fe particles were characterized by TEM (transmission electron microscope), XRD (X-ray diffractometer), and N2-BET. The dechlorination activity of the Ni/Fe was investigated using p-chlorophenol (p-CP) as a probe agent. Results demonstrated that the nanoscale Ni/Fe could effectively dechlorinate p-CP at relatively low metal to solution ratio of 0.4 g/L (Ni 5 wt%). The target with initial concentration ofp-CP 0.625 mmol/L was dechlorinted completely in 60 rain under ambient temperature and pressure. Factors affecting dechlorination efficiency, including reaction temperature, pH, Ni loading percentage over Fe, and metal to solution ratio, were investigated. The possible mechanism of dechlorination ofp-CP was proposed and discussed. The pseudo-first- order reaction took place on the surface of the Ni/Fe bimetallic particles, and the activation energy of the dechlorination reaction was determined to be 21.2 kJ/mol at the temperature rang of 287-313 K.