A parachute-payload model with randomize wind gust is developed to study the landing accuracy of the parachute decelerator system,which can be exactly described by the landing site distribution.The research focuses on...A parachute-payload model with randomize wind gust is developed to study the landing accuracy of the parachute decelerator system,which can be exactly described by the landing site distribution.The research focuses on the steady descent phase of the parachute descent process,so the parachute and the payload suspension formulation during the phase are mainly discussed.In addition,since the wind effects have a significant impact on the land site distribution of the passive decelerator system and it is difficult to obtain the exact wind profile in practice,major features of parachute-payload system are studied via the randomized wind gust formulation.As the randomized wind gust formulation is adopted,the wind effect can be considered without the exact wind gust profile and the parachute aerodynamic simulation can be fulfilled with uncertainties.Finally,the model is validated and discussed,and the parachute land site distributions with different wind randomize profiles are presented for comparison.The results show that when parachute is less stable,the land site tends to have a larger variance.展开更多
We have calculated the Stark effect of CH3F molecules in external electrical fields, the rotational population of supersonic CH3F molecules in different quantum states, and analyse the motion of weak-field-seeking CH3...We have calculated the Stark effect of CH3F molecules in external electrical fields, the rotational population of supersonic CH3F molecules in different quantum states, and analyse the motion of weak-field-seeking CH3F molecules in a st'ate |J = 1, KM = -1) inside the electrical field of a Stark decelerator by using a simple analytical model. Threedimensional Monte Carlo simulation is performed to simulate the dynamical slowing process of molecules through the decelerator, and the results are compared with those obtained from the analytical model, including the phase stability, slowing efficiency as well as the translational temperature of the slowed molecular packet. Our study shows that with a modest dipole moment (-1.85 Debye) and a relatively slight molecular weight (-34.03), CH3F molecules in a state |J= 1, KM = -1) are a good candidate for slowing with electrostatic field. With high voltages of ±10 kV applied on the decelerator, molecules of 370 m/s can be brought to a standstill within 200 slowing stages.展开更多
基金supported by the National Natural Science Foundation of China(No.11472137)the Educational Commission of Guangdong Province(No.2017KQNCX203)Science and Technology Project of Guangdong Province (No. 2016A010102023,2017A010102017)
文摘A parachute-payload model with randomize wind gust is developed to study the landing accuracy of the parachute decelerator system,which can be exactly described by the landing site distribution.The research focuses on the steady descent phase of the parachute descent process,so the parachute and the payload suspension formulation during the phase are mainly discussed.In addition,since the wind effects have a significant impact on the land site distribution of the passive decelerator system and it is difficult to obtain the exact wind profile in practice,major features of parachute-payload system are studied via the randomized wind gust formulation.As the randomized wind gust formulation is adopted,the wind effect can be considered without the exact wind gust profile and the parachute aerodynamic simulation can be fulfilled with uncertainties.Finally,the model is validated and discussed,and the parachute land site distributions with different wind randomize profiles are presented for comparison.The results show that when parachute is less stable,the land site tends to have a larger variance.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374029,10434060 and 10674047)the National Key Basic Research and Development Program of China (Grant No 2006CB921604)+2 种基金the Basic Key Program of Shanghai Municipality of China (Grant No 07JC14017)the Program for Changjiang Scholar and Innovative Research Teamthe Shanghai Leading Academic Discipline Project of China (Grant No B408)
文摘We have calculated the Stark effect of CH3F molecules in external electrical fields, the rotational population of supersonic CH3F molecules in different quantum states, and analyse the motion of weak-field-seeking CH3F molecules in a st'ate |J = 1, KM = -1) inside the electrical field of a Stark decelerator by using a simple analytical model. Threedimensional Monte Carlo simulation is performed to simulate the dynamical slowing process of molecules through the decelerator, and the results are compared with those obtained from the analytical model, including the phase stability, slowing efficiency as well as the translational temperature of the slowed molecular packet. Our study shows that with a modest dipole moment (-1.85 Debye) and a relatively slight molecular weight (-34.03), CH3F molecules in a state |J= 1, KM = -1) are a good candidate for slowing with electrostatic field. With high voltages of ±10 kV applied on the decelerator, molecules of 370 m/s can be brought to a standstill within 200 slowing stages.