Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 k...Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.展开更多
The influence of cosmological constant-type dark energy in the early universe is investigated. This is accommodated by a new dispersion relation in de Sitter spacetime. We perform a global fit to explore the cosmologi...The influence of cosmological constant-type dark energy in the early universe is investigated. This is accommodated by a new dispersion relation in de Sitter spacetime. We perform a global fit to explore the cosmological parameter space by using the CosmoMC package with the recently released Planck TT and WMAP polarization datasets. Using the results from the global fit, we compute a new CMB temperature-temperature (TT) spectrum. The obtained TT spectrum has lower power compared with that based on the ACDM model at large scales.展开更多
文摘Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.
基金Supported by National Natural Science Foundation of China(11375203)
文摘The influence of cosmological constant-type dark energy in the early universe is investigated. This is accommodated by a new dispersion relation in de Sitter spacetime. We perform a global fit to explore the cosmological parameter space by using the CosmoMC package with the recently released Planck TT and WMAP polarization datasets. Using the results from the global fit, we compute a new CMB temperature-temperature (TT) spectrum. The obtained TT spectrum has lower power compared with that based on the ACDM model at large scales.