Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal ...Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal noble gas preparation systems can clean up most geological samples. However, authigenic minerals from sedimentary rocks in oil/gas fields contain organic matter, which cannot be cleaned up by the normal preparation systems and thus influence the noble gas analyses. We introduce a novel gas purification system (PRC patent No. ZL201320117751.2), which includes several reversible purification pumps with different absorbing and degassing temperatures. It can well clean up water steam, carbon dioxide and organic gas- es. Mica minerals are often used for 40Ar/39Ar dating. A muscovite sample (2082MS) which could not be cleaned up by the normal preparation system with two SAES NP10 getters, becomes the test sample for a comparative experiment in this study. The experiment is assigned into 4 sections with the organic gas removal system (OGRS) "Closed/Opened" in turn. When the OGRS is closed only with two NP10 getters for purification, the 40At intensities increase in curves with inlet time because of impurities, the 40Ar/39Ar dating results yield age errors about +2%-±1% (20-). When the OGRS is opened for purification, in contrast, the 40Ar intensities decrease linearly with inlet time. This indicates that the gases have been cleaned up effectively, and the 40Ar/39Ar results yield ages with errors in ±0.4%. The OGRS is very helpful to obtain high-quality analysis data.展开更多
The fragmented pattern and the rapidly declining preservation of older glacial features/evidences limits the precision,with which glacial chronologies can be established.The challenge is exacerbated by the scarcity of...The fragmented pattern and the rapidly declining preservation of older glacial features/evidences limits the precision,with which glacial chronologies can be established.The challenge is exacerbated by the scarcity of datable material and limitations of dating methods.Nevertheless,the preserved glacial landforms have been fairly utilized to establish glacial chronologies from different sectors of the Indian Himalayas.The existing Himalayan glacial chrono-stratigraphies have revealed that in a single valley,past glacial advances rarely surpass four stages.Thus,local and regional glacial chronologies must be synthesized to understand glacial dynamics and potential forcing factors.This research presents an overview of glacier responses to climate variations revealed by glacial chrono-stratigraphies in the western Indian Himalayan region over the Quaternary(late).The synthesis demonstrated that,although the glacial advances were sporadic,glaciers in western Himalayas generally advanced during the Marine isotope stage(MIS)-3/4,MIS-2,late glacial,Younger Dryas(YD)and Holocene periods.The Holocene has witnessed multiple glacial advances and the scatter is significant.While previous glacial research revealed that Himalayan glaciers were out of phase with the global last glacial maximum(gLGM),weak Indian Summer Monsoon(ISM)has been implicated(ISM was reduced by roughly 20%).Recent research,however,has shown that gLGM glaciation responded to the global cooling associated with the enhanced mid-latitude westerlies(MLW).Further,the magnitude of gLGM glacier advance varied along and across the Himalayas particularly the transitional valleys located between the ISM and MLW influence.It is also evident that both the ISM and MLW have governed the late Quaternary glacial advances in the western Himalayan region.However,the responses of glaciers to ISM changes are more prominent.The insights gained from this synthesis will help us understand the dynamics of glacier response to climate change,which will be valuable for future climat展开更多
Bleaching experiments on Chinese pottery fine grains were conducted under sunlight and laboratory light conditions. It is found that the thermoluminescence (TL) at high temperatures can be bleached significantly, but ...Bleaching experiments on Chinese pottery fine grains were conducted under sunlight and laboratory light conditions. It is found that the thermoluminescence (TL) at high temperatures can be bleached significantly, but no effects were observed on TL signals used for the pre-dose dating technique. It is concluded that the pre-dose dating technique can be applied to samples even after light exposures. Pottery samples of Tang Dynasty and New Stone Age were studied. Modifications to routine pre-dose dating technique are proposed with adding preheat procedures and using saturation exponential fitting for the sensitivity change data. The modified technique can extend the dating range to New Stone Age.展开更多
基金the National Science and Technology Major Project of China(Grant No.2011ZX05025-003-007)the 135 program of Chinese Academy of Sciences(Grant No.GIGCAS-135Y234151001)
文摘Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal noble gas preparation systems can clean up most geological samples. However, authigenic minerals from sedimentary rocks in oil/gas fields contain organic matter, which cannot be cleaned up by the normal preparation systems and thus influence the noble gas analyses. We introduce a novel gas purification system (PRC patent No. ZL201320117751.2), which includes several reversible purification pumps with different absorbing and degassing temperatures. It can well clean up water steam, carbon dioxide and organic gas- es. Mica minerals are often used for 40Ar/39Ar dating. A muscovite sample (2082MS) which could not be cleaned up by the normal preparation system with two SAES NP10 getters, becomes the test sample for a comparative experiment in this study. The experiment is assigned into 4 sections with the organic gas removal system (OGRS) "Closed/Opened" in turn. When the OGRS is closed only with two NP10 getters for purification, the 40At intensities increase in curves with inlet time because of impurities, the 40Ar/39Ar dating results yield age errors about +2%-±1% (20-). When the OGRS is opened for purification, in contrast, the 40Ar intensities decrease linearly with inlet time. This indicates that the gases have been cleaned up effectively, and the 40Ar/39Ar results yield ages with errors in ±0.4%. The OGRS is very helpful to obtain high-quality analysis data.
基金The authors are thankful to the Director,Birbal Sahni Institute of Palaeosciences,Lucknow for constant support and providing infrastructural facilities.
文摘The fragmented pattern and the rapidly declining preservation of older glacial features/evidences limits the precision,with which glacial chronologies can be established.The challenge is exacerbated by the scarcity of datable material and limitations of dating methods.Nevertheless,the preserved glacial landforms have been fairly utilized to establish glacial chronologies from different sectors of the Indian Himalayas.The existing Himalayan glacial chrono-stratigraphies have revealed that in a single valley,past glacial advances rarely surpass four stages.Thus,local and regional glacial chronologies must be synthesized to understand glacial dynamics and potential forcing factors.This research presents an overview of glacier responses to climate variations revealed by glacial chrono-stratigraphies in the western Indian Himalayan region over the Quaternary(late).The synthesis demonstrated that,although the glacial advances were sporadic,glaciers in western Himalayas generally advanced during the Marine isotope stage(MIS)-3/4,MIS-2,late glacial,Younger Dryas(YD)and Holocene periods.The Holocene has witnessed multiple glacial advances and the scatter is significant.While previous glacial research revealed that Himalayan glaciers were out of phase with the global last glacial maximum(gLGM),weak Indian Summer Monsoon(ISM)has been implicated(ISM was reduced by roughly 20%).Recent research,however,has shown that gLGM glaciation responded to the global cooling associated with the enhanced mid-latitude westerlies(MLW).Further,the magnitude of gLGM glacier advance varied along and across the Himalayas particularly the transitional valleys located between the ISM and MLW influence.It is also evident that both the ISM and MLW have governed the late Quaternary glacial advances in the western Himalayan region.However,the responses of glaciers to ISM changes are more prominent.The insights gained from this synthesis will help us understand the dynamics of glacier response to climate change,which will be valuable for future climat
基金a grant to the first author from the Research Grant Council of the Hong Kong Special Administrative Region, China (Grant No. 7105/97P).
文摘Bleaching experiments on Chinese pottery fine grains were conducted under sunlight and laboratory light conditions. It is found that the thermoluminescence (TL) at high temperatures can be bleached significantly, but no effects were observed on TL signals used for the pre-dose dating technique. It is concluded that the pre-dose dating technique can be applied to samples even after light exposures. Pottery samples of Tang Dynasty and New Stone Age were studied. Modifications to routine pre-dose dating technique are proposed with adding preheat procedures and using saturation exponential fitting for the sensitivity change data. The modified technique can extend the dating range to New Stone Age.