We report the Neutrino-less Double Beta Decay(NLDBD) search results from PandaX-Ⅱ dual-phase liquid xenon time projection chamber.The total live time used in this analysis is 403.1 days from June 2016 to August2018...We report the Neutrino-less Double Beta Decay(NLDBD) search results from PandaX-Ⅱ dual-phase liquid xenon time projection chamber.The total live time used in this analysis is 403.1 days from June 2016 to August2018.With NLDBD-optimized event selection criteria,we obtain a fiducial mass of 219 kg of natural xenon.The accumulated xenon exposure is 242 kg yr,or equivalently 22.2 kg yr of 136Xe exposure.At the region around 136Xe decay Q-value of 2458 keV,the energy resolution of PandaX-Ⅱ is 4.2%.We find no evidence of NLDBD in PandaX-Ⅱand establish a lower limit for decay half-life of 2.1×1023yr at the 90% confidence level,which corresponds to an effective Majorana neutrino mass mββ <(1.4-3.7) eV.This is the first NLDBD result reported from a dual-phase xenon experiment.展开更多
We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such ...We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such a performance two low energy calibration systems have been successfully developed: a pulsed UV lamp extracting photoelectrons from the inner surface of the detector and various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence, which is a unique performance for such large massive detector. It opens up a new window in dark matter and low energy neutrino searches and it may allow the detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scattering.展开更多
It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our dete...It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg- PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.展开更多
暗物质探测是当今物理界重大前沿基础科学之一。中国暗物质实验(China Dark matter EXperiment,CDEX)是国内首个自主的暗物质直接探测实验。该实验依托国际最深最大、宇宙线通量最低的中国锦屏地下实验室(CJPL),旨在利用吨量级高纯锗探...暗物质探测是当今物理界重大前沿基础科学之一。中国暗物质实验(China Dark matter EXperiment,CDEX)是国内首个自主的暗物质直接探测实验。该实验依托国际最深最大、宇宙线通量最低的中国锦屏地下实验室(CJPL),旨在利用吨量级高纯锗探测器直接探测暗物质以及无中微子双贝塔衰变实验。CDEX合作组按照探测器质量大小已经历两个阶段,分别为CDEX-11 kg量级和CDEX-1010 kg量级。本文详细介绍了这两个阶段实验中最新重要的暗物质研究进展,包括年度调制效应、亚GeV轻暗物质分析、暗光子分析以及轴子分析。上述结果表明CDEX对低质量暗物质探测处于国际领先水平。CDEX合作组在锦屏地下实验室二期已建成约1700 m3的大型恒温液氮系统,届时将开展国际首个利用大型液氮屏蔽系统直接制冷的高纯锗阵列探测器实验。展开更多
基金Supported by grants from the Ministry of Science and Technology of China(2016YFA0400301,2016YFA0400302)a Double Top-class grant from Shanghai Jiao Tong University,grants from National Science Foundation of China(11435008,11505112,11525522,11775142,11755001)+3 种基金grants from the Office of Science and Technology,Shanghai Municipal Government(11DZ2260700,16DZ2260200,18JC1410200)the support from the Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Educationsupported in part by the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP)Hongwen Foundation in Hong Kong
文摘We report the Neutrino-less Double Beta Decay(NLDBD) search results from PandaX-Ⅱ dual-phase liquid xenon time projection chamber.The total live time used in this analysis is 403.1 days from June 2016 to August2018.With NLDBD-optimized event selection criteria,we obtain a fiducial mass of 219 kg of natural xenon.The accumulated xenon exposure is 242 kg yr,or equivalently 22.2 kg yr of 136Xe exposure.At the region around 136Xe decay Q-value of 2458 keV,the energy resolution of PandaX-Ⅱ is 4.2%.We find no evidence of NLDBD in PandaX-Ⅱand establish a lower limit for decay half-life of 2.1×1023yr at the 90% confidence level,which corresponds to an effective Majorana neutrino mass mββ <(1.4-3.7) eV.This is the first NLDBD result reported from a dual-phase xenon experiment.
文摘We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such a performance two low energy calibration systems have been successfully developed: a pulsed UV lamp extracting photoelectrons from the inner surface of the detector and various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence, which is a unique performance for such large massive detector. It opens up a new window in dark matter and low energy neutrino searches and it may allow the detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scattering.
文摘It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kg- PCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.