Multiturn coils is an effective transmitter for transient electromagnetic method(TEM) used in narrow space and complex terrain at presently. However, its high mutual inductance coupling and long turn-off time affect t...Multiturn coils is an effective transmitter for transient electromagnetic method(TEM) used in narrow space and complex terrain at presently. However, its high mutual inductance coupling and long turn-off time affect the quality of later data processing and interpretation. Compared with multiturn coils, the new conical source has low mutual inductance and short turn-off time. Based on the superposition principle, we use Hankel transform and numerical filtering method for forward modelling of the conical source field in the layered-media and explore TEM characteristics excited by this source. We apply improved damped least square inversion to integrated transient electromagnetic(TEM) data. We first invert the induced voltage into similar resistivity and apparent depth, and then use the inverted results as input parameters in the initial model and transform the apparent resistivity data into the frequency domain. Then, damped least square inversion is performed in the frequency domain using the initial model. Subsequently, we use automated model building to search for the extremes and inflection points in the resistivity–depth data that are treated as critical layer parameters. The inversion of theoretical and observed data suggests that the method modifies the resistivity and depth and yields a model of the underground layers.展开更多
Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step ...Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step in most surface wave methods.Many inversion methods have been applied to surface wave dispersion curve inversion,including linearized inversion and nonlinearized inversion methods.In this study,a hybrid inversion method of Damped Least Squares(DLS) with Very Fast Simulated Annealing(VFSA) is developed for multi-mode Rayleigh wave dispersion curve inversion.Both synthetic and in situ fi eld data were used to verify the validity of the proposed method.The results show that the proposed method is superior to the conventional VFSA method in aiming at global minimum,especially when parameter searching space is adjacent to real values of the parameters.The advantage of the new method is that it retains both the merits of VFSA for global search and DLS for local search.At high temperatures,the global search dominates the runs,while at a low temperatures,the local search dominates the runs.Thus,at low temperatures,the proposed method can almost directly approach the actual model.展开更多
基金supported by the National Natural Science Foundation of China(Nos.41564001,41674133,41572185,and 41604104)the Distinguished Young Talent Foundation of Jiangxi Province(No.20171BCB23068)
文摘Multiturn coils is an effective transmitter for transient electromagnetic method(TEM) used in narrow space and complex terrain at presently. However, its high mutual inductance coupling and long turn-off time affect the quality of later data processing and interpretation. Compared with multiturn coils, the new conical source has low mutual inductance and short turn-off time. Based on the superposition principle, we use Hankel transform and numerical filtering method for forward modelling of the conical source field in the layered-media and explore TEM characteristics excited by this source. We apply improved damped least square inversion to integrated transient electromagnetic(TEM) data. We first invert the induced voltage into similar resistivity and apparent depth, and then use the inverted results as input parameters in the initial model and transform the apparent resistivity data into the frequency domain. Then, damped least square inversion is performed in the frequency domain using the initial model. Subsequently, we use automated model building to search for the extremes and inflection points in the resistivity–depth data that are treated as critical layer parameters. The inversion of theoretical and observed data suggests that the method modifies the resistivity and depth and yields a model of the underground layers.
基金International Science&Technology Cooperation Program of China under Grant No.2011DFA71100the National Key Technology R&D Program under Grant No.2014BAK03B01the National Basic Research Program of China(973 Program)under Grant No.2007CB714201
文摘Surface wave methods are becoming increasingly popular in many geotechnical applications and in earthquake seismology due to their noninvasive characteristics.Inverse surface wave dispersion curves are a crucial step in most surface wave methods.Many inversion methods have been applied to surface wave dispersion curve inversion,including linearized inversion and nonlinearized inversion methods.In this study,a hybrid inversion method of Damped Least Squares(DLS) with Very Fast Simulated Annealing(VFSA) is developed for multi-mode Rayleigh wave dispersion curve inversion.Both synthetic and in situ fi eld data were used to verify the validity of the proposed method.The results show that the proposed method is superior to the conventional VFSA method in aiming at global minimum,especially when parameter searching space is adjacent to real values of the parameters.The advantage of the new method is that it retains both the merits of VFSA for global search and DLS for local search.At high temperatures,the global search dominates the runs,while at a low temperatures,the local search dominates the runs.Thus,at low temperatures,the proposed method can almost directly approach the actual model.