Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining fail...Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining failures and natural earthquakes. This paper aims, on the one hand, to draw an outline of laboratory AE studies in the last 50 years, which have addressed seismological problems. Topics include the power laws in which the similarity between AEs and earthquakes is involved and progress that has been made in AE technology and laboratory AE study. On the other hand, this study will highlight some key issues intensively discussed, especially in the last three decades, such as aspects related to the pre-failure damage evolution, fault nucleation and growth in brittle rocks and discuss factors governing these processes.展开更多
基金financial support by the Japan Science Promotion Society(JSPS 21246134)
文摘Since the similarity in size distribution of earthquakes and acoustic emissions (AE) was found in the 1960s, many laboratory studies have been motivated by the need to provide tools for the prediction of mining failures and natural earthquakes. This paper aims, on the one hand, to draw an outline of laboratory AE studies in the last 50 years, which have addressed seismological problems. Topics include the power laws in which the similarity between AEs and earthquakes is involved and progress that has been made in AE technology and laboratory AE study. On the other hand, this study will highlight some key issues intensively discussed, especially in the last three decades, such as aspects related to the pre-failure damage evolution, fault nucleation and growth in brittle rocks and discuss factors governing these processes.