期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于模糊聚类与改进BP算法的日负荷特性曲线分类与短期负荷预测
被引量:
72
1
作者
黎祚
周步祥
林楠
《电力系统保护与控制》
EI
CSCD
北大核心
2012年第3期56-60,共5页
提出了一种将模糊聚类技术与人工神经网络中的BP网络相结合的日负荷特性曲线分类与短期负荷预测的方法。通过模糊聚类技术将不同用户的负荷特性曲线进行分类,建立出不同的典型负荷曲线。然后利用同预测曲线相同类型的典型曲线,结合温度...
提出了一种将模糊聚类技术与人工神经网络中的BP网络相结合的日负荷特性曲线分类与短期负荷预测的方法。通过模糊聚类技术将不同用户的负荷特性曲线进行分类,建立出不同的典型负荷曲线。然后利用同预测曲线相同类型的典型曲线,结合温度、日类型、湿度等对短期负荷预测影响较大的因素作为学习样本建立相应的BP网络模型。针对传统BP算法的不足,利用变学习速率和附加动量来改进BP算法并预测日负荷曲线。通过对实际日负荷曲线样本进行分类和对短期负荷进行预测证明该方法预测精度较高,在实际应用中具备可行性。
展开更多
关键词
模糊聚类
BP网络
日负荷特性曲线
短期负荷
变学习速率
附加动量
下载PDF
职称材料
题名
基于模糊聚类与改进BP算法的日负荷特性曲线分类与短期负荷预测
被引量:
72
1
作者
黎祚
周步祥
林楠
机构
四川大学电气信息学院
四川电力职业技术学院
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2012年第3期56-60,共5页
文摘
提出了一种将模糊聚类技术与人工神经网络中的BP网络相结合的日负荷特性曲线分类与短期负荷预测的方法。通过模糊聚类技术将不同用户的负荷特性曲线进行分类,建立出不同的典型负荷曲线。然后利用同预测曲线相同类型的典型曲线,结合温度、日类型、湿度等对短期负荷预测影响较大的因素作为学习样本建立相应的BP网络模型。针对传统BP算法的不足,利用变学习速率和附加动量来改进BP算法并预测日负荷曲线。通过对实际日负荷曲线样本进行分类和对短期负荷进行预测证明该方法预测精度较高,在实际应用中具备可行性。
关键词
模糊聚类
BP网络
日负荷特性曲线
短期负荷
变学习速率
附加动量
Keywords
fuzzy
clustering
BP
neural
daily
load characteristics
curve
short-term
load
variable
learning
rate
additionalmomentum
分类号
TM715 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于模糊聚类与改进BP算法的日负荷特性曲线分类与短期负荷预测
黎祚
周步祥
林楠
《电力系统保护与控制》
EI
CSCD
北大核心
2012
72
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部