Since the first plant cyclic nucleotide-gated ion channel (CNGC), HvCBT1, was identified as a calmodulin bind- ing protein, more than a decade has passed and a substantial amount of work has been done to understand ...Since the first plant cyclic nucleotide-gated ion channel (CNGC), HvCBT1, was identified as a calmodulin bind- ing protein, more than a decade has passed and a substantial amount of work has been done to understand the molecular nature and function of these channel proteins. Based on electrophysiological and heterologous expression analyses, plant CNGCs function as non-selective cation channels and, so far, their biological roles have been reported in defense responses, development, and ion homeostasis. Forward genetic approaches identified four AtCNGCs (AtCNGC2, 4, 11, and 12) to be involved in plant immunity, as null mutants for AtCNGC2, 4, 11, and 12 as well as a gain-of- function mutant for AtCNGC11 and 12 exhibited alterations in defense responses. Since ion flux changes have been reported as one of the early events upon pathogen recognition and also are an essential component for the activation of defense responses, the involvement of CNGCs in these ion flux changes has been suggested. However, the recent detailed characterization of null mutants suggested a more complex involvement of this channel family. In this review, we focus on the discoveries and character- ization of these CNGC mutants and discuss possible roles of CNGCs as components in plant immunity.展开更多
环核苷酸门控离子通道(cyclic nucleotide-gated ion channels,CNG)是非选择性的阳离子通道,直接被环核苷酸活化.6个不同基因编码CNG离子通道蛋白,4个A亚单元(A1~A4)和2个B亚单元(B1,B3).CNG离子通道是由2个或3个不同的亚单元组...环核苷酸门控离子通道(cyclic nucleotide-gated ion channels,CNG)是非选择性的阳离子通道,直接被环核苷酸活化.6个不同基因编码CNG离子通道蛋白,4个A亚单元(A1~A4)和2个B亚单元(B1,B3).CNG离子通道是由2个或3个不同的亚单元组成的异四聚体复合物,是Ca^2+进入细胞内的主要通道之一.CNG离子通道的活性可被Ca^2+/CaM及磷酸化/去磷酸化作用所调节,从而改变细胞内钙离子浓度,触发一系列生理效应.近年来CNG离子通道的研究进展神速,成为生命科学的一个热点领域.本文对CNG离子通道的结构、功能及活性调节机制进行了综述.展开更多
文摘Since the first plant cyclic nucleotide-gated ion channel (CNGC), HvCBT1, was identified as a calmodulin bind- ing protein, more than a decade has passed and a substantial amount of work has been done to understand the molecular nature and function of these channel proteins. Based on electrophysiological and heterologous expression analyses, plant CNGCs function as non-selective cation channels and, so far, their biological roles have been reported in defense responses, development, and ion homeostasis. Forward genetic approaches identified four AtCNGCs (AtCNGC2, 4, 11, and 12) to be involved in plant immunity, as null mutants for AtCNGC2, 4, 11, and 12 as well as a gain-of- function mutant for AtCNGC11 and 12 exhibited alterations in defense responses. Since ion flux changes have been reported as one of the early events upon pathogen recognition and also are an essential component for the activation of defense responses, the involvement of CNGCs in these ion flux changes has been suggested. However, the recent detailed characterization of null mutants suggested a more complex involvement of this channel family. In this review, we focus on the discoveries and character- ization of these CNGC mutants and discuss possible roles of CNGCs as components in plant immunity.
文摘环核苷酸门控离子通道(cyclic nucleotide-gated ion channels,CNG)是非选择性的阳离子通道,直接被环核苷酸活化.6个不同基因编码CNG离子通道蛋白,4个A亚单元(A1~A4)和2个B亚单元(B1,B3).CNG离子通道是由2个或3个不同的亚单元组成的异四聚体复合物,是Ca^2+进入细胞内的主要通道之一.CNG离子通道的活性可被Ca^2+/CaM及磷酸化/去磷酸化作用所调节,从而改变细胞内钙离子浓度,触发一系列生理效应.近年来CNG离子通道的研究进展神速,成为生命科学的一个热点领域.本文对CNG离子通道的结构、功能及活性调节机制进行了综述.