利用PIV技术在一台基于直喷汽油机(gasoline direct injection,GDI)改造的光学发动机上测量了缸内滚流运动,通过进气道入口处翻板和进气道内挡板改变缸内滚流比,并利用本征正交分解(POD)方法将流场分解为平均流场、拟序流场、过渡流场...利用PIV技术在一台基于直喷汽油机(gasoline direct injection,GDI)改造的光学发动机上测量了缸内滚流运动,通过进气道入口处翻板和进气道内挡板改变缸内滚流比,并利用本征正交分解(POD)方法将流场分解为平均流场、拟序流场、过渡流场和湍流流场,分析滚流运动对气流循环变动的影响。试验结果表明:翻板和挡板的组合能有效改变流场结构,使GDI汽油机缸内形成大尺度的单一滚流,滚流比提高近三倍。通过本征正交分解分析发现,拟序流场中拟序结构涡团的变动是缸内气流循环变动的主要来源。大尺度强滚流使平均流场占能比例大幅提升达30%,减少了能量向拟序流场的传递,使拟序流场循环变动降低近50%,从而抑制了缸内气流运动整体的循环变动。展开更多
文摘利用PIV技术在一台基于直喷汽油机(gasoline direct injection,GDI)改造的光学发动机上测量了缸内滚流运动,通过进气道入口处翻板和进气道内挡板改变缸内滚流比,并利用本征正交分解(POD)方法将流场分解为平均流场、拟序流场、过渡流场和湍流流场,分析滚流运动对气流循环变动的影响。试验结果表明:翻板和挡板的组合能有效改变流场结构,使GDI汽油机缸内形成大尺度的单一滚流,滚流比提高近三倍。通过本征正交分解分析发现,拟序流场中拟序结构涡团的变动是缸内气流循环变动的主要来源。大尺度强滚流使平均流场占能比例大幅提升达30%,减少了能量向拟序流场的传递,使拟序流场循环变动降低近50%,从而抑制了缸内气流运动整体的循环变动。