以沈阳地区5~7 cm和25~27 cm 2个深度原状棕壤为研究对象,分析冻融循环次数和土壤含水率对棕壤崩解特性的影响。根据气象数据结合野外观测结果,共设计了5个冻融循环次数。控制土样质量含水率分别为10%、15%、20%、25%和35%。采用静水崩...以沈阳地区5~7 cm和25~27 cm 2个深度原状棕壤为研究对象,分析冻融循环次数和土壤含水率对棕壤崩解特性的影响。根据气象数据结合野外观测结果,共设计了5个冻融循环次数。控制土样质量含水率分别为10%、15%、20%、25%和35%。采用静水崩解,通过数显拉力计及测量软件测定崩解过程。结果表明:(1)棕壤崩解具有阶段性,包括快速吸水阶段、指数崩解阶段、阶跃崩解阶段和崩解完成阶段。其中指数崩解阶段是崩解过程的主要发生阶段,土样因拉扯或失去支撑接连崩落。该阶段的崩解速率和非毛管含水率对冻融循环次数的响应规律一致。根据拟合曲面,10%~15%的含水率区间存在最易崩解含水率,其最终崩解率最大。当土样含水率为25%和35%时,土样会跳过指数崩解过程直接进入阶跃崩解阶段。含水率35%条件下,5~7 cm和25~27 cm土样的最终崩解率很小,不超过6.93%和11.14%。(2)冻融作用会对含水率为10%和15%土样产生超固结效应,加速土壤孔隙的两极化分布,土样指数崩解阶段的崩解速率和非毛管含水率,最终在多次冻融后增加。冻融作用也会对含水率为25%和35%土样结构产生影响,扩张土壤孔隙造成内部沉降,以及降低吸水能力。土样指数崩解阶段的崩解速率和非毛管含水率,最终在多次冻融后减小。(3)25~27 cm土样孔隙差异性略大,较高的黏粒含量抑制了双电层对自由水的控制能力,最终崩解率偏高。冻融作用可将土壤抵抗由内到外发生侵蚀的能力,转化为抵抗由外到内发生侵蚀的能力。研究结果可为棕壤侵蚀研究提供数据支撑。展开更多
High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disin...High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DDCOD), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DDCOD of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DDCOD= kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.展开更多
基金supported by the China-Israel Joint Research Program, MOST of Chinathe National Natural Science Foundation of China (No. 51178047)the Foundation of Key Laboratory for Solid Waste Management and Environment Safety,Ministry of Education of China (No. SWMES 2010-2)
文摘High-pressure homogenization (HPH) technology was applied as a pretreatment to disintegrate sewage sludge. The effects of homogenization pressure, homogenization cycle number, and total solid content on sludge disintegration were investigated. The sludge disintegration degree (DDCOD), protein concentration, and polysaccharide concentration increased with the increase of homogenization pressure and homogenization cycle number, and decreased with the increase of sludge total solid (TS) content. The maximum DDCOD of 43.94% was achieved at 80 MPa with four homogenization cycles for a 9.58 g/L TS sludge sample. A HPH sludge disintegration model of DDCOD= kNaPb was established by multivariable linear regression to quantify the effects of homogenization parameters. The homogenization cycle exponent a and homogenization pressure exponent b were 0.4763 and 0.7324 respectively, showing that the effect of homogenization pressure (P) was more significant than that of homogenization cycle number (N). The value of the rate constant k decreased with the increase of sludge total solid content. The specific energy consumption increased with the increment of sludge disintegration efficiency. Lower specific energy consumption was required for higher total solid content sludge.