To meet the requirements of fast and automatic computation of subsonic and transonic aerodynamics in aircraft conceptual design,a novel finite volume solver for full potential flows on adaptive Cartesian grids is deve...To meet the requirements of fast and automatic computation of subsonic and transonic aerodynamics in aircraft conceptual design,a novel finite volume solver for full potential flows on adaptive Cartesian grids is developed in this paper.Cartesian grids with geometric adaptation are firstly generated automatically with boundary cells processed by cell-cutting and cell-merging algorithms.The nonlinear full potential equation is discretized by a finite volume scheme on these Cartesian grids and iteratively solved in an implicit fashion with a generalized minimum residual(GMRES) algorithm.During computation,solution-based mesh adaptation is also applied so as to capture flow features more accurately.An improved ghost-cell method is proposed to implement the non-penetration wall boundary condition where the velocity-potential of a ghost cell is modified by an analytic method instead.According to the characteristics of the Cartesian grids,the Kutta condition is applied by specially computing the gradients on Kutta-faces without directly assigning the potential jump to cells adjacent wake faces,which can significantly improve the solution converging speed.The feasibility and accuracy of the proposed method are validated by several typical cases of sub/transonic flows around an ONERA M6 wing,a DLR-F4 wing-body,and an unconventional figuration of a blended wing body(BWB).The validation cases demonstrate a fast convergence with fully automatic grid treatment and computation,and the results suggest its capacity in application for aircraft conceptual design.展开更多
对传统直角坐标网格进行改进,根据计算机图形学对与物面相交的正方形网格进行切割,使单元与物面贴体,并能根据流场的变化对网格区域进行局部加密。结合直角坐标网格与非结构网格的特点,编写了自适应直角坐标网格的生成程序,并发展了基...对传统直角坐标网格进行改进,根据计算机图形学对与物面相交的正方形网格进行切割,使单元与物面贴体,并能根据流场的变化对网格区域进行局部加密。结合直角坐标网格与非结构网格的特点,编写了自适应直角坐标网格的生成程序,并发展了基于切割单元直角坐标网格的直接模拟蒙特卡洛(Direct simulation Monte Carlo,DSMC)方法。同时通过当地模拟分子数、动态时间步长技术优化DSMC方法,提升计算效率。数值结果表明,本方法在计算过程中使搜索效率得到大大提升,同时也保证了物面网格单元的贴体性,提高了物面附近流场的计算精度,还易于实现网格自适应。展开更多
In the present paper, flow configurations of cavitating flow around a straight NACA0009 foil with a gap between the foil tip and sidewall are investigated numerically by large eddy simulation(LES) coupled with Zwart...In the present paper, flow configurations of cavitating flow around a straight NACA0009 foil with a gap between the foil tip and sidewall are investigated numerically by large eddy simulation(LES) coupled with Zwart-Gerber-Belamri(ZGB) cavitation model. A Cartesian cut-cell method is used for mesh generation, which is of good orthogonality and high quality. A good agreement is obtained between simulation and experiment. Two influencing factors on vorticity distributions, the interaction between different vortices and the occurrence of cavitation, are discussed in detail based on the numerical results. A series of ?-shaped loops are observed during the development of the induced vortex, which is a result of the instability of vortex pair. This finding may provide a new viewpoint to control the evolution of tip-leakage vortex(TLV) cavitation. Moreover, it is found that the dilatation term plays a much more important role in the evolution of TLV cavitation compared with that in sheet cavitation.展开更多
This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaph...This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaphragm that generates the unsteady flow within the device.The optimization,which is related exclusively to the diaphragm motion,aims at maximizing the net flowrate and minimizing the backflow at the outlet diffuser.All CFD analyses are performed using an in-house cut-cell method,based on the finite volume approach,on a many-processor system.To reduce the optimization turn-around time,two optimization methods,a gradient-free evolutionary algorithm enhanced by surrogate evaluation models and a gradient-based(GB)method are synergistically used.To support the GB optimization,the continuous adjoint method that computes the gradient of the objectives with respect to the design variables has been developed and programmed.Using the hybrid optimization method,the Pareto front of non-dominated solutions,in the two-objective space,is computed.Finally,a couple of optimal solutions selected from the computed Pareto front are re-evaluated by considering uncertainties in the operating conditions;these are quantified using the polynomial chaos expansion method.展开更多
The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fu...The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fully nonlinear time domain CFD is often considered to be an expensive and computationally intensive option for marine hydrodynamics and frequency-based methods are traditionally preferred by the industry. However, CFD models capture more of the physics of wave-structure interaction, and whereas traditional frequency domain approaches are restricted to linear motions, fully nonlinear CFD can simulate wave breaking and overtopping. Furthermore, with continuing advances in computing power and speed and the development of new algorithms for CFD, it is becoming a more popular option for design applications in the marine environment. In this work, different CFD approaches of increasing novelty are assessed: two commercial CFD packages incorporating recent advances in high resolution free surface flow simulation;a finite volume based Euler equation model with a shock capturing technique for the free surface;and meshless Smoothed Particle Hydrodynamics (SPH) method. These different approaches to fully nonlinear time domain simulation of free surface flow and wave structure interaction are applied to test cases of increasing complexity and the results compared with experimental data. Results are presented for regular wave interaction with a fixed horizontal cylinder, wave generation by a cone in driven vertical motion at the free surface and extreme wave interaction with a bobbing float (The Manchester Bobber WEC). The numerical results generally show good agreement with the physical experiments and simulate the wave-structure interaction and wave loading satisfactorily. The grid-based methods are shown to be generally less able than the meshless SPH to capture jet formation at the face of the cone, the resolution of the jet being grid dependent.展开更多
With the characteristic of the quadtree data structure, a new mesh generation method, which adopts square meshes to decompose a background domain and a cut cell approach to express arbitrary boundaries, is proposed to...With the characteristic of the quadtree data structure, a new mesh generation method, which adopts square meshes to decompose a background domain and a cut cell approach to express arbitrary boundaries, is proposed to keep the grids generated with a good orthogonality easily. The solution of N-S equations via finite volume method for this kind of unstructured meshes is derived. The mesh generator and N-S solver are implemented to study two benchmark cases, i.e. a lid driven flow within an inclined square and a natural convection heat transfer flow in a square duct with an inner hot circular face. The simulation results are in agreement with the benchmark values, verifying that the present methodology is valid and will be a strong tool for two-dimensional flow and heat transfer simulations, especially in the case of complex boundaries.展开更多
In this paper, a Cartesian grid method with cut cell has been developed to simulate mold filling of casting process. Cut cells at the cast-mold interface are generated on the Cartesian grid. With the boundary cut cell...In this paper, a Cartesian grid method with cut cell has been developed to simulate mold filling of casting process. Cut cells at the cast-mold interface are generated on the Cartesian grid. With the boundary cut cells, a special treatment is necessary. That is Cartesian grid method with cut cell. A simple shape was tested and the cut cell method was compared with the traditional one on Cartesian grids. And, a developed method was applied to the real casting product simulation. Cartesian grid system causes momentum loss and unsound fluid flow patterns because of inaccurate generation of meshes. These problems have been improved by using cut cell method.展开更多
Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on rel...Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.展开更多
基金co-supported by the National Natural Science Foundation of China(No.11672133)the Fundamental Research Funds for the Central UniversitiesThe support from the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘To meet the requirements of fast and automatic computation of subsonic and transonic aerodynamics in aircraft conceptual design,a novel finite volume solver for full potential flows on adaptive Cartesian grids is developed in this paper.Cartesian grids with geometric adaptation are firstly generated automatically with boundary cells processed by cell-cutting and cell-merging algorithms.The nonlinear full potential equation is discretized by a finite volume scheme on these Cartesian grids and iteratively solved in an implicit fashion with a generalized minimum residual(GMRES) algorithm.During computation,solution-based mesh adaptation is also applied so as to capture flow features more accurately.An improved ghost-cell method is proposed to implement the non-penetration wall boundary condition where the velocity-potential of a ghost cell is modified by an analytic method instead.According to the characteristics of the Cartesian grids,the Kutta condition is applied by specially computing the gradients on Kutta-faces without directly assigning the potential jump to cells adjacent wake faces,which can significantly improve the solution converging speed.The feasibility and accuracy of the proposed method are validated by several typical cases of sub/transonic flows around an ONERA M6 wing,a DLR-F4 wing-body,and an unconventional figuration of a blended wing body(BWB).The validation cases demonstrate a fast convergence with fully automatic grid treatment and computation,and the results suggest its capacity in application for aircraft conceptual design.
文摘对传统直角坐标网格进行改进,根据计算机图形学对与物面相交的正方形网格进行切割,使单元与物面贴体,并能根据流场的变化对网格区域进行局部加密。结合直角坐标网格与非结构网格的特点,编写了自适应直角坐标网格的生成程序,并发展了基于切割单元直角坐标网格的直接模拟蒙特卡洛(Direct simulation Monte Carlo,DSMC)方法。同时通过当地模拟分子数、动态时间步长技术优化DSMC方法,提升计算效率。数值结果表明,本方法在计算过程中使搜索效率得到大大提升,同时也保证了物面网格单元的贴体性,提高了物面附近流场的计算精度,还易于实现网格自适应。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51576143,11772239 and 91752105)the Science and Technology on Water Jet Propulsion Laboratory(Grant No.61422230101162223002)
文摘In the present paper, flow configurations of cavitating flow around a straight NACA0009 foil with a gap between the foil tip and sidewall are investigated numerically by large eddy simulation(LES) coupled with Zwart-Gerber-Belamri(ZGB) cavitation model. A Cartesian cut-cell method is used for mesh generation, which is of good orthogonality and high quality. A good agreement is obtained between simulation and experiment. Two influencing factors on vorticity distributions, the interaction between different vortices and the occurrence of cavitation, are discussed in detail based on the numerical results. A series of ?-shaped loops are observed during the development of the induced vortex, which is a result of the instability of vortex pair. This finding may provide a new viewpoint to control the evolution of tip-leakage vortex(TLV) cavitation. Moreover, it is found that the dilatation term plays a much more important role in the evolution of TLV cavitation compared with that in sheet cavitation.
文摘This paper presents the optimization of 3D valveless diaphragm micropump for medical applications.The pump comprises an inlet and outlet diffuser connected to the main chamber equipped with a periodically moving diaphragm that generates the unsteady flow within the device.The optimization,which is related exclusively to the diaphragm motion,aims at maximizing the net flowrate and minimizing the backflow at the outlet diffuser.All CFD analyses are performed using an in-house cut-cell method,based on the finite volume approach,on a many-processor system.To reduce the optimization turn-around time,two optimization methods,a gradient-free evolutionary algorithm enhanced by surrogate evaluation models and a gradient-based(GB)method are synergistically used.To support the GB optimization,the continuous adjoint method that computes the gradient of the objectives with respect to the design variables has been developed and programmed.Using the hybrid optimization method,the Pareto front of non-dominated solutions,in the two-objective space,is computed.Finally,a couple of optimal solutions selected from the computed Pareto front are re-evaluated by considering uncertainties in the operating conditions;these are quantified using the polynomial chaos expansion method.
文摘The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fully nonlinear time domain CFD is often considered to be an expensive and computationally intensive option for marine hydrodynamics and frequency-based methods are traditionally preferred by the industry. However, CFD models capture more of the physics of wave-structure interaction, and whereas traditional frequency domain approaches are restricted to linear motions, fully nonlinear CFD can simulate wave breaking and overtopping. Furthermore, with continuing advances in computing power and speed and the development of new algorithms for CFD, it is becoming a more popular option for design applications in the marine environment. In this work, different CFD approaches of increasing novelty are assessed: two commercial CFD packages incorporating recent advances in high resolution free surface flow simulation;a finite volume based Euler equation model with a shock capturing technique for the free surface;and meshless Smoothed Particle Hydrodynamics (SPH) method. These different approaches to fully nonlinear time domain simulation of free surface flow and wave structure interaction are applied to test cases of increasing complexity and the results compared with experimental data. Results are presented for regular wave interaction with a fixed horizontal cylinder, wave generation by a cone in driven vertical motion at the free surface and extreme wave interaction with a bobbing float (The Manchester Bobber WEC). The numerical results generally show good agreement with the physical experiments and simulate the wave-structure interaction and wave loading satisfactorily. The grid-based methods are shown to be generally less able than the meshless SPH to capture jet formation at the face of the cone, the resolution of the jet being grid dependent.
基金Supported by Japan Society for the Promotion of Science (Grant No.C20560175) the National Natural Science Foundation of China (Grant Nos.10872159 and 40675011)
文摘With the characteristic of the quadtree data structure, a new mesh generation method, which adopts square meshes to decompose a background domain and a cut cell approach to express arbitrary boundaries, is proposed to keep the grids generated with a good orthogonality easily. The solution of N-S equations via finite volume method for this kind of unstructured meshes is derived. The mesh generator and N-S solver are implemented to study two benchmark cases, i.e. a lid driven flow within an inclined square and a natural convection heat transfer flow in a square duct with an inner hot circular face. The simulation results are in agreement with the benchmark values, verifying that the present methodology is valid and will be a strong tool for two-dimensional flow and heat transfer simulations, especially in the case of complex boundaries.
文摘In this paper, a Cartesian grid method with cut cell has been developed to simulate mold filling of casting process. Cut cells at the cast-mold interface are generated on the Cartesian grid. With the boundary cut cells, a special treatment is necessary. That is Cartesian grid method with cut cell. A simple shape was tested and the cut cell method was compared with the traditional one on Cartesian grids. And, a developed method was applied to the real casting product simulation. Cartesian grid system causes momentum loss and unsound fluid flow patterns because of inaccurate generation of meshes. These problems have been improved by using cut cell method.
基金This project is supported by National Natural Science Foundation of China (No. 60375020, No. 50305033)Provincial Natural Science Foundation of Zhejiang, China (No. Y105430).
文摘Adaptive layered Cartesian cut cell method is presented to solve the difficulty of the tmstructured hexahedral anisotropic Cartesian grids generation from the complex CAD model. "Vertex merging algorithm based on relaxed AVL tree is investigated to construct topological structure for stereo lithography (STL) files, and a topology-based self-adaptive layered slicing algorithm with special features control strategy is brought forward. With the help of convex hull, a new points-in-polygon method is employed to improve the Cartesian cut cell method. By integrating the self-adaptive layered slicing algorithm and the improved Cartesian cut cell method, the adaptive layered Cartesian cut cell method gains the volume data of the complex CAD model in STL file and generates the unstructured hexahedral anisotropic Cartesian grids.