Considered in this note are numerical tracking algorithms for the accurate following of implicit curves. We start with a fixed point on the curve, and then systematically place on it additional points, one after the o...Considered in this note are numerical tracking algorithms for the accurate following of implicit curves. We start with a fixed point on the curve, and then systematically place on it additional points, one after the other. In this note we first go over the basic procedure of moving forward tangentially from an already placed point then orthogonally returning to the curve. Next, we further consider higher order forward stepping procedures for greater accuracy. We note, however, that higher order methods, desirable for greater accuracy, may harbor latent instabilities. This note suggests ways of holding such instabilities in check, to have stable and highly accurate tracing methods. The note has several supporting numerical examples, including the rounding of a dynamical “snap-through” point.展开更多
文摘Considered in this note are numerical tracking algorithms for the accurate following of implicit curves. We start with a fixed point on the curve, and then systematically place on it additional points, one after the other. In this note we first go over the basic procedure of moving forward tangentially from an already placed point then orthogonally returning to the curve. Next, we further consider higher order forward stepping procedures for greater accuracy. We note, however, that higher order methods, desirable for greater accuracy, may harbor latent instabilities. This note suggests ways of holding such instabilities in check, to have stable and highly accurate tracing methods. The note has several supporting numerical examples, including the rounding of a dynamical “snap-through” point.