By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is su...By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is suitable to current-mode CMOS circuits is proposed. Thecircuits, such as ternary full-adder etc., designed by using this theory have simpler circuit struc-tures and correct logic functions. It is confirmed that this theory is efficient in guiding the logicdesign of current-mode CMOS circuits at switch level.展开更多
A new low-voltage and high-speed sense amplifier is presented, based on a very simple direct currentmode comparison. It adopts low-voltage reference current extraction and a dynamic output method to realize its perfor...A new low-voltage and high-speed sense amplifier is presented, based on a very simple direct currentmode comparison. It adopts low-voltage reference current extraction and a dynamic output method to realize its performance indicators such as low voltage, low power and high precision. The proposed amplifier can sense a 0.5 #A current gap and work with a lowest voltage of 1 V. In addition, the current power of a single amplifier is optimized by 15%.展开更多
基金Supported by National Natural Science Foundation of China
文摘By applying switch-signal theory, the interaction between MOS transmission switch-ing transistor and current signal in current-mode CMOS circuits is analyzed, and the theory oftransmission current-switches which is suitable to current-mode CMOS circuits is proposed. Thecircuits, such as ternary full-adder etc., designed by using this theory have simpler circuit struc-tures and correct logic functions. It is confirmed that this theory is efficient in guiding the logicdesign of current-mode CMOS circuits at switch level.
文摘A new low-voltage and high-speed sense amplifier is presented, based on a very simple direct currentmode comparison. It adopts low-voltage reference current extraction and a dynamic output method to realize its performance indicators such as low voltage, low power and high precision. The proposed amplifier can sense a 0.5 #A current gap and work with a lowest voltage of 1 V. In addition, the current power of a single amplifier is optimized by 15%.