The pinning of quantized magnetic vortices in superconducting YBa_(2)Cu_(3)O_(7-δ)(YBCO or Y123)thin films with Y_(2)BaCuO_(5)(Y211)nanoinclusions have been investigated over wide temperature range(4.2-77 K).The conc...The pinning of quantized magnetic vortices in superconducting YBa_(2)Cu_(3)O_(7-δ)(YBCO or Y123)thin films with Y_(2)BaCuO_(5)(Y211)nanoinclusions have been investigated over wide temperature range(4.2-77 K).The concentration of Y211 nanoinclusions has been systematically varied inside YBCO thin films prepared by laser ablation technique using surface modified target approach.Large pinning force density values(Fp∼0.5 TNm^(−3)at 4.2 K,9 T)have been observed for the YBCO film with moderate concentration of Y211 nanoinclusions(3.6 area%on ablation target).In addition,uniform enhancement in critical current density(J_(c))was observed in the angular dependent J_(c)measurement of YBCO+Y211 nanocomposite films.Y211 nanoinclusions have been found to be very efficient in pinning the quantized vortices thereby enhancing the in‐field J_(c)values over a wide range of temperature.Increasing the concentration of Y211 secondary phase into Y123 film matrix results into agglomeration of Y211 phase and observed as increased Y211 nanoparticle size.These larger secondary phase nanoparticles are not as efficient pinning centers at lower temperatures as they are at higher temperatures due to substantial reduction of the coherence length at lower temperatures.Investigation of the temperature dependence of J_(c)for YBCO+Y211 nanocomposite films has been conducted and possible vortex pinning mechanism in these nanocomposite films has been discussed.展开更多
The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents ...The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.展开更多
This paper presents a numerical investigation of the interaction among wave,flow and a fixed cylinder using the naoe-FOAM-SJTU solver,which is a viscous solver for hydrodynamics based on OpenFOAM.The simulation consid...This paper presents a numerical investigation of the interaction among wave,flow and a fixed cylinder using the naoe-FOAM-SJTU solver,which is a viscous solver for hydrodynamics based on OpenFOAM.The simulation considers the strong nonlinear interaction among a regular wave,flow,and a single fixed cylinder due to viscosity,which is common in offshore structures.The study focus on the vortex induced by viscosity and its significant role in hydrodynamic performance computation.A mesh convergence study is conducted prior to the simulation,and a proper set of mesh is chosen.The simultaneous generation of the regular wave and flow is realized using the numerical field boundary,and the wave propagation is validated.The results of wave elevation and pressures captured by wave gauges and probes around the fixed cylinder are compared with experiment results.The structure of vortices is displayed at significant times,and the phenomena of wave elevation and pressure changes around the cylinder are analyzed in detail using the Omega-Liutex identification method.展开更多
The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up consid...The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wavecurrent.展开更多
Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eig...Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.展开更多
Based on Duan’s topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are diff...Based on Duan’s topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of δ function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a δ-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.展开更多
The low-frequency mode in plasma is very important for the study of plasma transport and confinement. Many authors have widely investigated the various nonlinear low-frequency modes in magnetized plasma, but the inves...The low-frequency mode in plasma is very important for the study of plasma transport and confinement. Many authors have widely investigated the various nonlinear low-frequency modes in magnetized plasma, but the investigations were limited to the situation of static equilibrium plasma. This note studies the shear Alfven wave in current-carrying plasma where the electron component moves slowly with respect to the ion component. A new solution of dipole vortex has been obtained, the wave characteristic展开更多
Based on Duan's topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are diff...Based on Duan's topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of 未 function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a 未-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.展开更多
Nonlinear vortex gyrotropic motion in a three-nanocontacts system is investigated by micromagnetic slmulations and analytical calculations. Three out-of-plane spin-polarized currents are injected into a nanodisk throu...Nonlinear vortex gyrotropic motion in a three-nanocontacts system is investigated by micromagnetic slmulations and analytical calculations. Three out-of-plane spin-polarized currents are injected into a nanodisk through a centered nanocontact and two off-centered nanocontacts, respectively. For current combination (ipl, ip0, ip2) = (-1,1, -1), the trajectory of the vortex core is a peanut-like orbit, but it is an elliptical orbit for (ip1, ip0, ip2) = (1, 1, -1). Moreover, the gyrotropic frequency displays peaks for both current combinations. Analytical calculations based on the Thiele equation show that the changes of frequency can be ascribed mainly to the forces generated by the Oersted field accompanying the currents. We also demonstrate a dependence of eigenfrequency shifts on the direction and distance of the applied currents.展开更多
基金supported by the ALCA project of Japan Science and Technology Agency.
文摘The pinning of quantized magnetic vortices in superconducting YBa_(2)Cu_(3)O_(7-δ)(YBCO or Y123)thin films with Y_(2)BaCuO_(5)(Y211)nanoinclusions have been investigated over wide temperature range(4.2-77 K).The concentration of Y211 nanoinclusions has been systematically varied inside YBCO thin films prepared by laser ablation technique using surface modified target approach.Large pinning force density values(Fp∼0.5 TNm^(−3)at 4.2 K,9 T)have been observed for the YBCO film with moderate concentration of Y211 nanoinclusions(3.6 area%on ablation target).In addition,uniform enhancement in critical current density(J_(c))was observed in the angular dependent J_(c)measurement of YBCO+Y211 nanocomposite films.Y211 nanoinclusions have been found to be very efficient in pinning the quantized vortices thereby enhancing the in‐field J_(c)values over a wide range of temperature.Increasing the concentration of Y211 secondary phase into Y123 film matrix results into agglomeration of Y211 phase and observed as increased Y211 nanoparticle size.These larger secondary phase nanoparticles are not as efficient pinning centers at lower temperatures as they are at higher temperatures due to substantial reduction of the coherence length at lower temperatures.Investigation of the temperature dependence of J_(c)for YBCO+Y211 nanocomposite films has been conducted and possible vortex pinning mechanism in these nanocomposite films has been discussed.
基金supported by National Natural Science Foundation of China(No.51977132)the Key Special Science and Technology Project of Liaoning Province(No.2020JH1/10100012)the General Program of the Education Department of Liaoning Province(No.LJKZ0126).
文摘The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.
基金supported by the National Natural Science Foundation of China(Grant No.52131102)the National Key Research and Development Program of China(Grant Nos.2022YFC2806705,2019YFB1704200).
文摘This paper presents a numerical investigation of the interaction among wave,flow and a fixed cylinder using the naoe-FOAM-SJTU solver,which is a viscous solver for hydrodynamics based on OpenFOAM.The simulation considers the strong nonlinear interaction among a regular wave,flow,and a single fixed cylinder due to viscosity,which is common in offshore structures.The study focus on the vortex induced by viscosity and its significant role in hydrodynamic performance computation.A mesh convergence study is conducted prior to the simulation,and a proper set of mesh is chosen.The simultaneous generation of the regular wave and flow is realized using the numerical field boundary,and the wave propagation is validated.The results of wave elevation and pressures captured by wave gauges and probes around the fixed cylinder are compared with experiment results.The structure of vortices is displayed at significant times,and the phenomena of wave elevation and pressure changes around the cylinder are analyzed in detail using the Omega-Liutex identification method.
文摘The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wavecurrent.
基金Project supported by the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province,China(Grant No.JJKH20191007KJ)the Program for Development of Science and Technology of Siping City,China(Grant No.2016063)
文摘Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10905026 and 10905027)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20090211120030)the Lanzhou Development of Science and Technology Program,China(Grant No.2010-1-129)
文摘Based on Duan’s topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of δ function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a δ-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.
文摘The low-frequency mode in plasma is very important for the study of plasma transport and confinement. Many authors have widely investigated the various nonlinear low-frequency modes in magnetized plasma, but the investigations were limited to the situation of static equilibrium plasma. This note studies the shear Alfven wave in current-carrying plasma where the electron component moves slowly with respect to the ion component. A new solution of dipole vortex has been obtained, the wave characteristic
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10905026 and 10905027)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20090211120030)the Lanzhou Development of Science and Technology Program,China(Grant No.2010-1-129)
文摘Based on Duan's topological current theory,we show that in a ferromagnetic spin-triplet superconductor there is a topological defect of string structures which can be interpreted as vortex lines.Such defects are different from the Abrikosov vortices in one-component condensate systems.We investigate the inner topological structure of the vortex lines.The topological charge density,velocity,and topological current of the vortex lines can all be expressed in terms of 未 function,which indicates that the vortices can only arise from the zero points of an order parameter field.The topological charges of vortex lines are quantized in terms of the Hopf indices and Brouwer degrees of-mapping.The divergence of the self-induced magnetic field can be rigorously determined by the corresponding order parameter fields and its expression also takes the form of a 未-like function.Finally,based on the implicit function theorem and the Taylor expansion,we conduct detailed studies on the bifurcation of vortex topological current and find different directions of the bifurcation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11404053)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.n130405011)
文摘Nonlinear vortex gyrotropic motion in a three-nanocontacts system is investigated by micromagnetic slmulations and analytical calculations. Three out-of-plane spin-polarized currents are injected into a nanodisk through a centered nanocontact and two off-centered nanocontacts, respectively. For current combination (ipl, ip0, ip2) = (-1,1, -1), the trajectory of the vortex core is a peanut-like orbit, but it is an elliptical orbit for (ip1, ip0, ip2) = (1, 1, -1). Moreover, the gyrotropic frequency displays peaks for both current combinations. Analytical calculations based on the Thiele equation show that the changes of frequency can be ascribed mainly to the forces generated by the Oersted field accompanying the currents. We also demonstrate a dependence of eigenfrequency shifts on the direction and distance of the applied currents.