Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermit...Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].展开更多
In recent years,numerical solutions of the inverse eigenvalue problems with multiple eigenvalues have attracted the attention of some researchers,and there have been a few algorithms with quadratic convergence.We prop...In recent years,numerical solutions of the inverse eigenvalue problems with multiple eigenvalues have attracted the attention of some researchers,and there have been a few algorithms with quadratic convergence.We propose here an extended two-step method for solving the inverse eigenvalue problems with multiple eigenvalues.Under appropriate assumptions,the convergence analysis of the extended method is presented and the cubic root-convergence rate is proved.Numerical experiments are provided to confirm the theoretical results and comparisons with the inexact Cayley transform method are made.Our extended method and convergence result in the present paper may enrich the results of numerical solutions of the inverse eigenvalue problems with multiple eigenvalues.展开更多
In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation ...In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.展开更多
Newton’s method is used to find the roots of a system of equations <span style="white-space:nowrap;"><em>f</em> (x) = 0</span>. It is one of the most important procedures in numerica...Newton’s method is used to find the roots of a system of equations <span style="white-space:nowrap;"><em>f</em> (x) = 0</span>. It is one of the most important procedures in numerical analysis, and its applicability extends to differential equations and integral equations. Analysis of the method shows a quadratic convergence under certain assumptions. For several years, researchers have improved the method by proposing modified Newton methods with salutary efforts. A modification of the Newton’s method was proposed by McDougall and Wotherspoon <a href="#ref1">[1]</a> with an order of convergence of <span style="white-space:nowrap;">1+ <span style="white-space:nowrap;">√2</span></span>. On a new type of methods with cubic convergence was proposed by H. H. H. Homeier <a href="#ref2">[2]</a>. In this article, we present a new modification of Newton method based on secant method. Analysis of convergence shows that the new method is cubically convergent. Our method requires an evaluation of the function and one of its derivatives.展开更多
In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-s...In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.展开更多
This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finit...This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.展开更多
We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the u...We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the unknown solution over the spatial interval.Using an extension of the analysis of Douglas and Dupont[23]for Dirichlet boundary conditions,we derive optimal order error estimates in the discrete maximum norm in time and the continuous maximum norm in space.We discuss the solution of the linear system arising at each time level via the capacitance matrix technique and the package COLROWfor solving almost block diagonal linear systems.We present numerical examples that confirm the theoretical global error estimates and exhibit superconvergence phenomena.展开更多
We propose a two-phase-SQP(Sequential Quadratic Programming)algorithm for equality-constrained optimization problem.In this paper,an iteration process is developed,and at each iteration,two quadratic sub-problems are ...We propose a two-phase-SQP(Sequential Quadratic Programming)algorithm for equality-constrained optimization problem.In this paper,an iteration process is developed,and at each iteration,two quadratic sub-problems are solved.It is proved that,under some suitable assumptions and without computing further higher-order derivatives,this iteration process achieves higher-order local convergence property in comparison to Newton-SQP scheme.Theoretical advantage and a note on l1 merit function associated to the method are provided.展开更多
基金partially supported by the CSIR India(Grant No.09/084(0531)/2010-EMR-I)the SERC,DST India(Project No.SR/S4/MS:694/10)
文摘Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].
基金supported by the National Natural Science Foundation of China(Grant 12071441).
文摘In recent years,numerical solutions of the inverse eigenvalue problems with multiple eigenvalues have attracted the attention of some researchers,and there have been a few algorithms with quadratic convergence.We propose here an extended two-step method for solving the inverse eigenvalue problems with multiple eigenvalues.Under appropriate assumptions,the convergence analysis of the extended method is presented and the cubic root-convergence rate is proved.Numerical experiments are provided to confirm the theoretical results and comparisons with the inexact Cayley transform method are made.Our extended method and convergence result in the present paper may enrich the results of numerical solutions of the inverse eigenvalue problems with multiple eigenvalues.
文摘In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.
文摘Newton’s method is used to find the roots of a system of equations <span style="white-space:nowrap;"><em>f</em> (x) = 0</span>. It is one of the most important procedures in numerical analysis, and its applicability extends to differential equations and integral equations. Analysis of the method shows a quadratic convergence under certain assumptions. For several years, researchers have improved the method by proposing modified Newton methods with salutary efforts. A modification of the Newton’s method was proposed by McDougall and Wotherspoon <a href="#ref1">[1]</a> with an order of convergence of <span style="white-space:nowrap;">1+ <span style="white-space:nowrap;">√2</span></span>. On a new type of methods with cubic convergence was proposed by H. H. H. Homeier <a href="#ref2">[2]</a>. In this article, we present a new modification of Newton method based on secant method. Analysis of convergence shows that the new method is cubically convergent. Our method requires an evaluation of the function and one of its derivatives.
文摘In this paper,a proficient numerical technique for the time-fractional telegraph equation(TFTE)is proposed.The chief aim of this paper is to utilize a relatively new type of B-spline called the cubic trigonometric B-spline for the proposed scheme.This technique is based on finite difference formulation for the Caputo time-fractional derivative and cubic trigonometric B-splines based technique for the derivatives in space.A stability analysis of the scheme is presented to confirm that the errors do not amplify.A convergence analysis is also presented.Computational experiments are carried out in addition to verify the theoretical analysis.Numerical results are contrasted with a few present techniques and it is concluded that the presented scheme is progressively right and more compelling.
文摘This work is concerned with the application of a redefined set of extended uniform cubic B-spline(RECBS)functions for the numerical treatment of time-fractional Telegraph equation.The presented technique engages finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to interpolate the solution curve along the spatial grid.Stability analysis of the scheme is provided to ensure that the errors do not amplify during the execution of the numerical procedure.The derivation of uniform convergence has also been presented.Some computational experiments are executed to verify the theoretical considerations.Numerical results are compared with the existing schemes and it is concluded that the present scheme returns superior outcomes on the topic.
基金The research of J.C.Lopez-Marcos is supported in part by Ministerio de Ciencia e Innovacion,MTM2011-25238.
文摘We formulate and analyze the Crank-Nicolson Hermite cubic orthogonal spline collocation method for the solution of the heat equation in one space variable with nonlocal boundary conditions involving integrals of the unknown solution over the spatial interval.Using an extension of the analysis of Douglas and Dupont[23]for Dirichlet boundary conditions,we derive optimal order error estimates in the discrete maximum norm in time and the continuous maximum norm in space.We discuss the solution of the linear system arising at each time level via the capacitance matrix technique and the package COLROWfor solving almost block diagonal linear systems.We present numerical examples that confirm the theoretical global error estimates and exhibit superconvergence phenomena.
文摘We propose a two-phase-SQP(Sequential Quadratic Programming)algorithm for equality-constrained optimization problem.In this paper,an iteration process is developed,and at each iteration,two quadratic sub-problems are solved.It is proved that,under some suitable assumptions and without computing further higher-order derivatives,this iteration process achieves higher-order local convergence property in comparison to Newton-SQP scheme.Theoretical advantage and a note on l1 merit function associated to the method are provided.