Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement pro...Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.展开更多
This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of int...This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles.When a real-life outburst case is examined,the required minimum stress for intact coal outburst is estimated.The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m^(2).For the real-life case,more than 2300 MJ of transport work is needed,and 10062.09,7046.57 and 5895.47 m^(3) of gas is required when the gas pressure is 1,2 and 3 MPa,respectively.The crushing work exceeds the transport work and even reaches 13.96 times of the transport work.How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal.The strain energy is needed for the crushing work,and the required minimum stress is over 54.35 MPa,even reaching 300.44 MPa.These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range.展开更多
基金supported by the National Natural Science Foundation of China (41472272, 41225011)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (SKLGP2013K015)
文摘Mountain hazards with large masses of rock blocks in motion – such as rock falls, avalanches and landslides – threaten human lives and structures. Dynamic fragmentation is a common phenomenon during the movement process of rock blocks in rock avalanche, due to the high velocity and impacts against obstructions. In view of the energy consumption theory for brittle rock fragmentation proposed by Bond, which relates energy to size reduction, a theoretical model is proposed to estimate the average fragment size for a moving rock block when it impacts against an obstruction. Then, different forms of motion are studied, with various drop heights and slope angles for the moving rock block. The calculated results reveal that the average fragment size decreases as the drop height increases, whether for free-fall or for a sliding or rolling rock block, and the decline in size is rapid for low heights and slow for increasing heights in the corresponding curves. Moreover, the average fragment size also decreases as the slope angle increases for a slidingrock block. In addition, a rolling rock block has a higher degree of fragmentation than a sliding rock block, even for the same slope angle and block volume. Finally, to compare with others' results, the approximate number of fragments is estimated for each calculated example, and the results show that the proposed model is applicable to a relatively isotropic moving rock block.
基金The authors are grateful for the support from the National Natural Science Foundation of China(Nos.52004008 and 52004005)Natural Science Foundation of Anhui Province of China(Nos.2008085QE260 and 2008085QE222)a Project is supported by Independent Research fund of The State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(Anhui University of Science and Technology)(No.SKLMRDPC19ZZ07).
文摘This research reviewed the mechanics and gas desorption properties of intact coal,and tested the crushing work ratios of different intact coals,and then,studied the stress conditions for the failure or crushing of intact coal and the gas demand for the pulverization of intact coal particles.When a real-life outburst case is examined,the required minimum stress for intact coal outburst is estimated.The study concludes that the crushing work ratios of three intact coal samples vary from 294.3732 to 945.8048 J/m^(2).For the real-life case,more than 2300 MJ of transport work is needed,and 10062.09,7046.57 and 5895.47 m^(3) of gas is required when the gas pressure is 1,2 and 3 MPa,respectively.The crushing work exceeds the transport work and even reaches 13.96 times of the transport work.How to provide such an enormous crushing work is an energy-limiting factor for the outburst in intact coal.The strain energy is needed for the crushing work,and the required minimum stress is over 54.35 MPa,even reaching 300.44 MPa.These minimum stresses far exceed the in-situ vertical and horizontal stresses that can be provided at the 300–700 m mining depth range.