In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flo...In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.展开更多
Results from a series of studies on the stream-wise vibration of a circular cylinder verifying Japan Society of Mechanical Engineers Standard S012-1998, Guideline for Evaluation of Flow-induced Vibration of a Cylindri...Results from a series of studies on the stream-wise vibration of a circular cylinder verifying Japan Society of Mechanical Engineers Standard S012-1998, Guideline for Evaluation of Flow-induced Vibration of a Cylindrical Structure in a Pipe, are summarized and discussed in this paper. Experiments were carried out in a water tunnel and in a wind tunnel using a two-dimensional cylinder model elastically supported at both ends of the cylinder and a cantilevered cylinder model with a finite span length that was elastically supported at one end. These cylinder models were allowed to vibrate with one degree of freedom in the stream-wise direction. In addition, we adopted a cantilevered cylinder model that vibrated with two degrees of freedom in both the stream-wise and cross-flow directions under the same vibration conditions as an actual thermocouple well. The value of the Scruton number (structural damping parameter) was changed over a wide range, so as to evaluate the value of the critical Scruton number that suppressed vibration of the cylinder. For the two-dimensional cylinder, two different types of stream-wise excitations appeared in the reduced velocity range of approximately half of the resonance-reduced velocity. For the stream-wise vibration in the first excitation region, due to a symmetric vortex flow, the response amplitudes were sensitive to the Scruton number, while the shedding frequency of alternating vortex flow was locked-in to half of the Strouhal number of vibrating frequency of a cylinder in the second excitation region. In addition, the effects of the aspect ratio of a cantilevered cylinder on the flow-induced vibration characteristics were clarified and compared with the results of a two-dimensional cylinder. When a cantilevered circular cylinder with a finite length vibrates with one degree of freedom in the stream-wise di-rection, it is found that acylinder with a small aspect ratio has a single excitation region, whereas a cylinder with a large aspect ratio has two excitation regions. Furthe展开更多
This paper discusses numerical results from three-dimensional large eddy simulations of an oscillating cylinder under prescribed movements in uniform flow. Six cases, namely pure in-line, pure cross-flow and two group...This paper discusses numerical results from three-dimensional large eddy simulations of an oscillating cylinder under prescribed movements in uniform flow. Six cases, namely pure in-line, pure cross-flow and two groups of 'Figure of Eight' oscillation patterns are under investigation at Reynolds number Re = 24000. The ' Figure of Eight' pattern in each group is with identical shape but oppusite orbital directions. The numerical results on hydrodynamic forces, higher order force components, and vortex shedding modes are extensively studied and compared with the measured experimental data. It is found that the fluid force in phase with the velocity, which represents the energy transfer between the fluid and the cylinder, has opposite sign and different magnitude due to the opposite orbital direction. Higher order force components in cross-flow direction are found to occur at odd nmnber times of the oscillating frequency, while even nmbers dominate the higher order force components in in-llne direction. The 2C and 2T vortex shedding modes are well reproduced due to the opposite orbital direction effect. Comparisons between numerical and experimental results indicate that the present numerical model could be a rational tool for the identification of hydrodynamic coefficients which are normally applied in empirical models to predict the vortex-induced vibrations of slender marine structures.展开更多
基金This project was financially supported by the High Technology Research and Developmant Programof China (GrantNo.2006AA09Z356) the National Natural Science Foundation of China (Grant No.503795)
文摘In this work, we study the coupled cross-flow and in-line vortex-induced vibration (VIV) of a fixedly mounted flexible pipe, which is free to move in cross-flow ( Y- ) and in-line ( X- ) direction in a fluid flow where the mass and natural frequencies are precisely the same in both X- and Y-direction. The fluid speed varies from low to high with the corresponding vortex shedding frequency varying from below the first natural frequency to above the second natural frequency of the flexible pipe. Particular emphasis was placed on the investigation of the relationship between in-line and cross-flow vibration. The experimental results analyzed by using these measurements exhibits several valuable features.
文摘Results from a series of studies on the stream-wise vibration of a circular cylinder verifying Japan Society of Mechanical Engineers Standard S012-1998, Guideline for Evaluation of Flow-induced Vibration of a Cylindrical Structure in a Pipe, are summarized and discussed in this paper. Experiments were carried out in a water tunnel and in a wind tunnel using a two-dimensional cylinder model elastically supported at both ends of the cylinder and a cantilevered cylinder model with a finite span length that was elastically supported at one end. These cylinder models were allowed to vibrate with one degree of freedom in the stream-wise direction. In addition, we adopted a cantilevered cylinder model that vibrated with two degrees of freedom in both the stream-wise and cross-flow directions under the same vibration conditions as an actual thermocouple well. The value of the Scruton number (structural damping parameter) was changed over a wide range, so as to evaluate the value of the critical Scruton number that suppressed vibration of the cylinder. For the two-dimensional cylinder, two different types of stream-wise excitations appeared in the reduced velocity range of approximately half of the resonance-reduced velocity. For the stream-wise vibration in the first excitation region, due to a symmetric vortex flow, the response amplitudes were sensitive to the Scruton number, while the shedding frequency of alternating vortex flow was locked-in to half of the Strouhal number of vibrating frequency of a cylinder in the second excitation region. In addition, the effects of the aspect ratio of a cantilevered cylinder on the flow-induced vibration characteristics were clarified and compared with the results of a two-dimensional cylinder. When a cantilevered circular cylinder with a finite length vibrates with one degree of freedom in the stream-wise di-rection, it is found that acylinder with a small aspect ratio has a single excitation region, whereas a cylinder with a large aspect ratio has two excitation regions. Furthe
文摘This paper discusses numerical results from three-dimensional large eddy simulations of an oscillating cylinder under prescribed movements in uniform flow. Six cases, namely pure in-line, pure cross-flow and two groups of 'Figure of Eight' oscillation patterns are under investigation at Reynolds number Re = 24000. The ' Figure of Eight' pattern in each group is with identical shape but oppusite orbital directions. The numerical results on hydrodynamic forces, higher order force components, and vortex shedding modes are extensively studied and compared with the measured experimental data. It is found that the fluid force in phase with the velocity, which represents the energy transfer between the fluid and the cylinder, has opposite sign and different magnitude due to the opposite orbital direction. Higher order force components in cross-flow direction are found to occur at odd nmnber times of the oscillating frequency, while even nmbers dominate the higher order force components in in-llne direction. The 2C and 2T vortex shedding modes are well reproduced due to the opposite orbital direction effect. Comparisons between numerical and experimental results indicate that the present numerical model could be a rational tool for the identification of hydrodynamic coefficients which are normally applied in empirical models to predict the vortex-induced vibrations of slender marine structures.