期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于贝叶斯网的跨领域情感分析方法 被引量:4
1
作者 刘慧清 郭延哺 李维华 《计算机应用与软件》 北大核心 2020年第12期119-126,共8页
基于机器学习的情感分析依赖于充足的标签样本。针对标签样本不足以及情感分类器存在的领域适应性问题,提出一种基于贝叶斯网的跨领域情感分析方法。基于贝叶斯网,对源领域和目标领域构建局部特征模型;研究局部特征模型的融合方法并构... 基于机器学习的情感分析依赖于充足的标签样本。针对标签样本不足以及情感分类器存在的领域适应性问题,提出一种基于贝叶斯网的跨领域情感分析方法。基于贝叶斯网,对源领域和目标领域构建局部特征模型;研究局部特征模型的融合方法并构建全局特征模型;基于全局特征模型建立情感知识的迁移方法并训练分类器。在Amazon数据集上进行实验,结果表明,该方法在一定程度上提高了目标领域文本的情感分类精度,以及分类器在目标领域中的适应性。 展开更多
关键词 跨领域情感分析 贝叶斯网 融合 迁移
下载PDF
一种基于卷积神经网络的跨领域情感分析 被引量:3
2
作者 姬晨 郭延哺 +2 位作者 金宸 段云浩 李维华 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第2期253-258,共6页
文本情感分析就是分析主观文本的情感倾向.针对情感分析中标签样本不足以及不同领域中情感表达存在差异的问题,提出一种基于卷积神经网络的跨领域情感分析方法,利用源领域标签样本完成对目标领域的无监督情感分析.首先,量化词项的情感... 文本情感分析就是分析主观文本的情感倾向.针对情感分析中标签样本不足以及不同领域中情感表达存在差异的问题,提出一种基于卷积神经网络的跨领域情感分析方法,利用源领域标签样本完成对目标领域的无监督情感分析.首先,量化词项的情感极性、基于词向量度量词项的领域一致性,并在此基础上选择情感强烈且语义一致的词项作为领域间的共享词;然后,采用卷积神经网络提取文本特征,基于共享词的极性对源领域情感文本进行特征扩展;其次,基于扩展的文本完成情感分类器的训练,并对目标领域的情感文本进行分类;最后,在Amazon数据集上进行实验分析,实验结果表明该方法可以提高跨领域情感分类的准确率. 展开更多
关键词 文本情感分析 跨领域情感分析 卷积神经网络 特征扩展
下载PDF
归纳式迁移学习在跨领域情感倾向性分析中的应用 被引量:2
3
作者 孟佳娜 赵丹丹 +1 位作者 于玉海 孙世昶 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期175-183,共9页
在解决情感倾向性分析问题中,传统的监督学习和半监督学习都是在训练和测试所用的数据来自相同分布的假设基础之上的,但在很多情况下不能满足这样的假设,这就产生了跨领域的情感倾向性分析问题.在跨领域情感倾向性分析中,提出一种基于... 在解决情感倾向性分析问题中,传统的监督学习和半监督学习都是在训练和测试所用的数据来自相同分布的假设基础之上的,但在很多情况下不能满足这样的假设,这就产生了跨领域的情感倾向性分析问题.在跨领域情感倾向性分析中,提出一种基于归纳式迁移学习的图模型,通过图模型建立源领域和目标领域数据之间的关联,使得源领域的数据通过图模型学习目标领域数据在特征和实例上的特点.同时,利用归纳式迁移学习方法使用少量的目标领域的已标注数据进行训练,从而提高了情感分类器在目标领域的分类准确率,极大地改进了跨领域情感倾向性分析的效果.在标准数据集上进行了实验,并与监督学习方法 SVM、半监督学习方向TSVM以及其它3种常用的迁移学习方法进行了对比,对比结果显示本文方法显著的高于SVM和TSVM,并在大多数数据集上优于其它3种迁移学习方法,实验结果表明该方法是有效的. 展开更多
关键词 归纳式学习 跨领域情感倾向性分析 迁移学习 图模型
下载PDF
基于梯度数据选择的跨领域情感分析
4
作者 苏仪 周夏冰 《软件导刊》 2023年第5期50-56,共7页
情感分析研究往往依赖特定场景的大量标注数据,领域迁移会导致模型需要重新进行训练,因此跨领域情感分析任务应运而生。然而,目前跨领域情感分析方法大多考虑学习域的不变特征,或进行特征适应以处理源领域与目标领域的差距,并没有充分... 情感分析研究往往依赖特定场景的大量标注数据,领域迁移会导致模型需要重新进行训练,因此跨领域情感分析任务应运而生。然而,目前跨领域情感分析方法大多考虑学习域的不变特征,或进行特征适应以处理源领域与目标领域的差距,并没有充分、高效地利用源领域数据,所以需要从数据迁移和利用的角度研究领域适应问题。不同于之前从源领域提取可迁移样本的启发式方法,提出一种通用的可学习的替代方法——梯度数据选择(GDS),可在训练过程中自动分配样本权重,由此使不可迁移的样本很容易在采样过程中被丢弃,而可迁移的样本会被更加频繁地采样到。在英文和中文两个数据集上进行实验,并将GDS应用到BERT、RoBERTa等模型进行通用性分析,实验结果证实了该方法的有效性。 展开更多
关键词 跨领域情感分析 领域适应 数据选择 半监督学习 迁移学习 预训练模型
下载PDF
特征和实例迁移相融合的跨领域倾向性分析 被引量:1
5
作者 孟佳娜 于玉海 +1 位作者 赵丹丹 孙世昶 《中文信息学报》 CSCD 北大核心 2015年第4期74-79,143,共7页
在情感倾向性分析中,经常会发生由于领域知识的变化引起的分类精度下降的问题。为解决此类问题,该文提出了一种基于实例和特征相融合的知识迁移方法,首先通过三部图构建了源领域和目标领域的领域依赖特征词之间的关联,并得到一个公共的... 在情感倾向性分析中,经常会发生由于领域知识的变化引起的分类精度下降的问题。为解决此类问题,该文提出了一种基于实例和特征相融合的知识迁移方法,首先通过三部图构建了源领域和目标领域的领域依赖特征词之间的关联,并得到一个公共的语义空间来对原有的向量空间模型进行重建,然后再通过带偏置的马尔科夫模型,建立源领域和目标领域实例之间的关联,从而有效的将源领域学习到的情感倾向性知识迁移到目标领域中,高于其它方法的实验结果验证了算法的有效性。 展开更多
关键词 跨领域倾向性分析 迁移学习 偏置的马尔科夫模型
下载PDF
改进枢轴特征选择的跨领域情感分类 被引量:3
6
作者 梁俊葛 相艳 +3 位作者 张周彬 熊馨 邵党国 马磊 《计算机工程与设计》 北大核心 2020年第11期3193-3198,共6页
对跨领域情感分类任务中因标签样本不足以及不同领域中特征分布差异大导致分类准确率低的问题进行研究,提出一种改进特征选择的跨领域情感分类模型(IPFS)。利用词形还原解决文本中构建词袋模型中的特征冗余的问题,通过卡方检验算法选择... 对跨领域情感分类任务中因标签样本不足以及不同领域中特征分布差异大导致分类准确率低的问题进行研究,提出一种改进特征选择的跨领域情感分类模型(IPFS)。利用词形还原解决文本中构建词袋模型中的特征冗余的问题,通过卡方检验算法选择领域间具有相同表征的枢轴特征作为领域间共享的桥梁,结合神经网络模型,完成跨领域情感分类任务。实验结果表明,IPFS模型与现有的相关模型相比取得了更好的分类效果。 展开更多
关键词 跨领域情感分析 枢轴特征 卡方检验 词形还原 神经网络
下载PDF
基于集成一致性的多源跨领域情感分类模型
7
作者 梁俊葛 线岩团 +3 位作者 相艳 王红斌 陆婷 许莹 《数据采集与处理》 CSCD 北大核心 2020年第5期858-866,共9页
现有的跨领域情感分类方法大多只利用了单个源域到目标域的迁移特征,没有充分考虑目标域实例与不同源域之间的联系。针对此问题,本文提出一种无监督的多源跨领域情感分类模型。首先利用单个源域到目标域的迁移特征训练基分类器,并对不... 现有的跨领域情感分类方法大多只利用了单个源域到目标域的迁移特征,没有充分考虑目标域实例与不同源域之间的联系。针对此问题,本文提出一种无监督的多源跨领域情感分类模型。首先利用单个源域到目标域的迁移特征训练基分类器,并对不同的基分类器加权;然后将不同基分类器对目标域实例预测的集成一致性作为目标函数,优化该目标函数,得到不同基分类器的权重;最后利用加权后的基分类器得到目标域的情感分类结果。该模型在亚马逊产品评论数据集上和Skytrax数据集上进行了实验,并与6种基线模型进行了比较。实验结果表明,本文方法相比基线模型,在8个不同目标域的实验中分类性能均有明显提升。 展开更多
关键词 跨领域情感分类 集成 一致性 多源域 无监督
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部