Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle w...Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.展开更多
Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium...Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.展开更多
Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the react...Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the reaction cross sections of many isotopes.Given that the number of experiments on the reactions in astrophysical energy regions is very rare,the reaction cross sections are determined by theoretical methods whose accuracy should be tested.In this study,given that ^(121)Sb is a stable seed isotope located in the region of medium-mass p-nuclei,we investigated the cross sections and reaction rates of the ^(121)Sb(α,γ)^(125)I reaction using the TALYS computer code with 432 different combinations of input parameters(OMP,LDM,and SFM).The optimal model combinations were determined using the threshold logic unit method.The theoretical reaction cross-sectional results were compared with the experimental results reported in the literature.The reaction rates were determined using the two input parameter sets most compatible with the measurements,and they were compared with the reaction rate databases:STARLIB and REACLIB.展开更多
We discuss current attempts to employ the modified potential cluster model to describe the available experimental data on the^(13)B(n,γ0+1)^(14)B total cross-sections.The estimated results of the M1 and E1 transition...We discuss current attempts to employ the modified potential cluster model to describe the available experimental data on the^(13)B(n,γ0+1)^(14)B total cross-sections.The estimated results of the M1 and E1 transitions from the n^(13)B scattering states to the ground and first excited states of^(14)B are presented.The 1st resonance at Ex=1.275 MeV(1+)is revealed in both the cross-section and reaction rate.Within the variation in the asymptotic constant,a thermal cross-section interval of 5.1-8.9 mb is proposed.Based on the theoretical total cross-sections at energies of 0.01 eV to 5 MeV,we calculate the reaction rate in the temperature range of 0.01 to 10T9.The ignition T9 values of the^(13)B(n,γ0+1)^(14)B reaction depending on a neutron number density n_(n)of~10^(22)cm^(−3)are determined.The radiative neutron capture reaction rates on the boron^(10-13)B and carbon^(12-14)Сisotopes are compared.展开更多
Time-dependent quantum wave packet calculations were carried out for the F + HBr reaction on the latest London-Erying-Polanyi-Sato potential energy surface constructed by Persky et al. The calculated reaction probabi...Time-dependent quantum wave packet calculations were carried out for the F + HBr reaction on the latest London-Erying-Polanyi-Sato potential energy surface constructed by Persky et al. The calculated reaction probabilities dramatically increase near the zero collision energy and then slightly decrease with increasing collision energy, which corresponds well to the behavior of a barrierless reaction. The effects of reagent HBr excitation were examined, it is shown that both the vibrational and the rotational excitations of reagent HBr have a negative effect on the reactivity of F + HBr. The integral cross-section for the ground state of the reagent HBr decreases at a low collision energy and then becomes plat with increasing collision energy, which is reasonable for the feasibility of such an exothermal reaction. The rate constant that was obtained is slightly higher than that obtained in the quasi-classical trajectory calculation.展开更多
The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Eff...The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow ex-pansion and compression on the cellular detonation cell were investigated to illus-trate the mechanism of the transverse wave development and the cellular detona-tion cell evolution. By examining gas composition variations behind the leading shock,the chemical reaction rate,the reaction zone length,and thermodynamic parameters,two kinds of the abnormal detonation waves were identified. To explore their development mechanism,chemical reactions,reflected shocks and rarefac-tion waves were discussed,which interact with each other and affect the cellular detonation in different ways.展开更多
在低温核天体物理环境下,如静态核稳定燃烧阶段的核反应都发生较低的能区,其伽莫夫窗口内的核反应截面非常小,这就需要加速器提供较强束流才能完成核反应截面的直接测量。最近在中国科学院近代物理的320 k V高压平台上建立了低能核天体...在低温核天体物理环境下,如静态核稳定燃烧阶段的核反应都发生较低的能区,其伽莫夫窗口内的核反应截面非常小,这就需要加速器提供较强束流才能完成核反应截面的直接测量。最近在中国科学院近代物理的320 k V高压平台上建立了低能核天体物理实验室以及相应的研究平台。驱动该平台的是一个14.5 GHz的永磁铁型ECR离子源,它能够提供非常强的束流离子。对于质子和氦离子,离子源出口的最大流强可以达到100 eμA,在实验终端上可以获得大约30 eμA的流强。基于此强流加速器装置,我们建立了核天体物理实验测量装置,包括靶室以及带电粒子和伽玛射线探测器等设备。利用已知的核反应对探测器性能和实验方法进行了一系列测试。同时,展示了近年来取得的一些主要实验结果。最后,对该平台上开展工作的前景进行了展望,并指出基于该地面装置的低能核反应研究所积累的技术及经验对于我国锦屏深地核天体物理JUNA项目的重要意义。展开更多
The thermonuclear^19F(p,α0)16O reaction rate in the temperature region 0.007–10 GK has been derived by re-evaluating the available experimental data, together with the low-energy theoretical R-matrix extrapolation...The thermonuclear^19F(p,α0)16O reaction rate in the temperature region 0.007–10 GK has been derived by re-evaluating the available experimental data, together with the low-energy theoretical R-matrix extrapolations.Our new rate deviates by up to about 30% compared to the previous results, although all rates are consistent within the uncertainties. At very low temperature(e.g. 0.01 GK) our reaction rate is about 20% lower than the most recently published rate, because of a difference in the low energy extrapolated S-factor and a more accurate estimate of the reduced mass used in the calculation of the reaction rate. At temperatures above ^1 GK, our rate is lower, for instance, by about 20% around 1.75 GK, because we have re-evaluated the previous data(Isoya et al., Nucl. Phys.7, 116(1958)) in a meticulous way. The present interpretation is supported by the direct experimental data. The uncertainties of the present evaluated rate are estimated to be about 20% in the temperature region below 0.2 GK,and are mainly caused by the lack of low-energy experimental data and the large uncertainties in the existing data.Asymptotic giant branch(AGB) stars evolve at temperatures below 0.2 GK, where the^19F(p,α)16O reaction may play a very important role. However, the current accuracy of the reaction rate is insufficient to help to describe, in a careful way, the fluorine over-abundances observed in AGB stars. Precise cross section(or S factor) data in the low energy region are therefore needed for astrophysical nucleosynthesis studies.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12075027,1232509,11961141004,and 12175152)the National Science Foundation(Nos.Phys-2011890 and Phy-1430152)。
文摘Calcium production and the stellar evolution of first-generation stars remain fascinating mysteries in astrophysics.As one possible nucleosynthesis scenario,break-out from the hot carbon–nitrogen–oxygen(HCNO)cycle was thought to be the source of the calcium observed in these oldest stars.However,according to the stellar modeling,a nearly tenfold increase in the thermonuclear rate ratio of the break-out ^(19)F(p,γ)^(20) Ne reaction with respect to the competing ^(19)F(p,α)^(16) O back-processing reaction is required to reproduce the observed calcium abundance.We performed a direct measurement of this break-out reaction at the China Jinping underground laboratory.The measurement was performed down to the low-energy limit of E_(c.m.)=186 keV in the center-of-mass frame.The key resonance was observed at 225.2 keV for the first time.At a temperature of approximately 0.1 GK,this new resonance enhanced the thermonuclear ^(19)F(p,γ)^(20) Ne rate by up to a factor of≈7.4,compared with the previously recommended NACRE rate.This is of particular interest to the study of the evolution of the first stars and implies a stronger breakdown in their“warm”CNO cycle through the ^(19)F(p,γ)^(20) Ne reaction than previously envisioned.This break-out resulted in the production of the calcium observed in the oldest stars,enhancing our understanding of the evolution of the first stars.
基金supported by the National Key R&D Program of China(No.2022YFA1602401)by the National Natural Science Foundation of China(No.11825504)。
文摘Big Bang nucleosynthesis(BBN)theory predicts the primordial abundances of the light elements^(2) H(referred to as deuterium,or D for short),^(3)He,^(4)He,and^(7) Li produced in the early universe.Among these,deuterium,the first nuclide produced by BBN,is a key primordial material for subsequent reactions.To date,the uncertainty in predicted deuterium abundance(D/H)remains larger than the observational precision.In this study,the Monte Carlo simulation code PRIMAT was used to investigate the sensitivity of 11 important BBN reactions to deuterium abundance.We found that the reaction rate uncertainties of the four reactions d(d,n)^(3)He,d(d,p)t,d(p,γ)^(3)He,and p(n,γ)d had the largest influence on the calculated D/H uncertainty.Currently,the calculated D/H uncertainty cannot reach observational precision even with the recent LUNA precise d(p,γ)^(3) He rate.From the nuclear physics aspect,there is still room to largely reduce the reaction-rate uncertainties;hence,further measurements of the important reactions involved in BBN are still necessary.A photodisintegration experiment will be conducted at the Shanghai Laser Electron Gamma Source Facility to precisely study the deuterium production reaction of p(n,γ)d.
文摘Proton-rich nuclei are synthesized via photodisintegration and reverse reactions.To examine this mechanism and reproduce the observed p-nucleus abundances,it is crucial to know the reaction rates and thereby the reaction cross sections of many isotopes.Given that the number of experiments on the reactions in astrophysical energy regions is very rare,the reaction cross sections are determined by theoretical methods whose accuracy should be tested.In this study,given that ^(121)Sb is a stable seed isotope located in the region of medium-mass p-nuclei,we investigated the cross sections and reaction rates of the ^(121)Sb(α,γ)^(125)I reaction using the TALYS computer code with 432 different combinations of input parameters(OMP,LDM,and SFM).The optimal model combinations were determined using the threshold logic unit method.The theoretical reaction cross-sectional results were compared with the experimental results reported in the literature.The reaction rates were determined using the two input parameter sets most compatible with the measurements,and they were compared with the reaction rate databases:STARLIB and REACLIB.
基金the Ministry of Science and Higher Education of the Republic of Kazakhstan(AP09259174)。
文摘We discuss current attempts to employ the modified potential cluster model to describe the available experimental data on the^(13)B(n,γ0+1)^(14)B total cross-sections.The estimated results of the M1 and E1 transitions from the n^(13)B scattering states to the ground and first excited states of^(14)B are presented.The 1st resonance at Ex=1.275 MeV(1+)is revealed in both the cross-section and reaction rate.Within the variation in the asymptotic constant,a thermal cross-section interval of 5.1-8.9 mb is proposed.Based on the theoretical total cross-sections at energies of 0.01 eV to 5 MeV,we calculate the reaction rate in the temperature range of 0.01 to 10T9.The ignition T9 values of the^(13)B(n,γ0+1)^(14)B reaction depending on a neutron number density n_(n)of~10^(22)cm^(−3)are determined.The radiative neutron capture reaction rates on the boron^(10-13)B and carbon^(12-14)Сisotopes are compared.
基金Supported by the Open Project Program of Key Laboratory of Advanced Materials &Rheological Properties, Ministry of Educa-tion, China(No KF0504)
文摘Time-dependent quantum wave packet calculations were carried out for the F + HBr reaction on the latest London-Erying-Polanyi-Sato potential energy surface constructed by Persky et al. The calculated reaction probabilities dramatically increase near the zero collision energy and then slightly decrease with increasing collision energy, which corresponds well to the behavior of a barrierless reaction. The effects of reagent HBr excitation were examined, it is shown that both the vibrational and the rotational excitations of reagent HBr have a negative effect on the reactivity of F + HBr. The integral cross-section for the ground state of the reagent HBr decreases at a low collision energy and then becomes plat with increasing collision energy, which is reasonable for the feasibility of such an exothermal reaction. The rate constant that was obtained is slightly higher than that obtained in the quasi-classical trajectory calculation.
文摘The two-dimensional cellular detonation propagating in a channel with area-changing cross section was numerically simulated with the dispersion-controlled dissipative scheme and a detailed chemical reaction model. Effects of the flow ex-pansion and compression on the cellular detonation cell were investigated to illus-trate the mechanism of the transverse wave development and the cellular detona-tion cell evolution. By examining gas composition variations behind the leading shock,the chemical reaction rate,the reaction zone length,and thermodynamic parameters,two kinds of the abnormal detonation waves were identified. To explore their development mechanism,chemical reactions,reflected shocks and rarefac-tion waves were discussed,which interact with each other and affect the cellular detonation in different ways.
基金the National Basic Research Program of China,the National Natural Science Foundation of China,the Chinese Academy of Sciences, and the Key Research Program of Chinese Academy of Sciences
基金Supported by National Natural Science Foundation of China(11490562,11490560,11675229)National Key Research and Development Program of China(2016YFA0400503)
文摘The thermonuclear^19F(p,α0)16O reaction rate in the temperature region 0.007–10 GK has been derived by re-evaluating the available experimental data, together with the low-energy theoretical R-matrix extrapolations.Our new rate deviates by up to about 30% compared to the previous results, although all rates are consistent within the uncertainties. At very low temperature(e.g. 0.01 GK) our reaction rate is about 20% lower than the most recently published rate, because of a difference in the low energy extrapolated S-factor and a more accurate estimate of the reduced mass used in the calculation of the reaction rate. At temperatures above ^1 GK, our rate is lower, for instance, by about 20% around 1.75 GK, because we have re-evaluated the previous data(Isoya et al., Nucl. Phys.7, 116(1958)) in a meticulous way. The present interpretation is supported by the direct experimental data. The uncertainties of the present evaluated rate are estimated to be about 20% in the temperature region below 0.2 GK,and are mainly caused by the lack of low-energy experimental data and the large uncertainties in the existing data.Asymptotic giant branch(AGB) stars evolve at temperatures below 0.2 GK, where the^19F(p,α)16O reaction may play a very important role. However, the current accuracy of the reaction rate is insufficient to help to describe, in a careful way, the fluorine over-abundances observed in AGB stars. Precise cross section(or S factor) data in the low energy region are therefore needed for astrophysical nucleosynthesis studies.