Heart valve and blood vessel replacement using artificial prostheses is an effective strategy for the treatment of cardiovascular disease at terminal stage.Natural extracellular matrix(ECM)-derived materials(decellula...Heart valve and blood vessel replacement using artificial prostheses is an effective strategy for the treatment of cardiovascular disease at terminal stage.Natural extracellular matrix(ECM)-derived materials(decellularized allogeneic or xenogenic tissues)have received extensive attention as the cardiovascular scaffold.However,the bioprosthetic grafts usually far less durable and undergo calcification and progressive structural deterioration.Glutaraldehyde(GA)is a commonly used crosslinking agent for improving biocompatibility and durability of the natural scaffold materials.However,the nature ECM and GA-crosslinked materials may result in calcification and eventually lead to the transplant failure.Therefore,studies have been conducted to explore new crosslinking agents.In this review,we mainly focused on research progress of ECM-derived cardiovascular scaffolds and their crosslinking strategies.展开更多
基金This work was supported by a grant from the National Natural Science Foundation(Grant No.:31070870).
文摘Heart valve and blood vessel replacement using artificial prostheses is an effective strategy for the treatment of cardiovascular disease at terminal stage.Natural extracellular matrix(ECM)-derived materials(decellularized allogeneic or xenogenic tissues)have received extensive attention as the cardiovascular scaffold.However,the bioprosthetic grafts usually far less durable and undergo calcification and progressive structural deterioration.Glutaraldehyde(GA)is a commonly used crosslinking agent for improving biocompatibility and durability of the natural scaffold materials.However,the nature ECM and GA-crosslinked materials may result in calcification and eventually lead to the transplant failure.Therefore,studies have been conducted to explore new crosslinking agents.In this review,we mainly focused on research progress of ECM-derived cardiovascular scaffolds and their crosslinking strategies.