Croplands are decreasing due to the expansion of urban areas into rural communities and to some extent due to sand accumulations. Increases in population numbers, new development, in addition to the accumulation of sa...Croplands are decreasing due to the expansion of urban areas into rural communities and to some extent due to sand accumulations. Increases in population numbers, new development, in addition to the accumulation of sand and soil salinity are the major driving force leading to abandonment and shrinking of cropland. The aim of this study was to investigate and assess to what extent agricultural lands are affected by urban development in the Al Hassa oasis, Eastern region in Saudi Arabia by employing Landsat time series data of years 1988, 2000 and 2017 as the main source of information. A set of ground truth, control points (GCPs) was also used besides population census data. Unsupervised classifications approach, Normalized Difference Vegetation Index (NDVI) and change detection methods were used here. Urban area during 2000-2017 exhibits much higher increase compared to 1988-2000, while the arable lands declined to −3.4% in 1988-2000 and increased to 22% during 2000-2017. The data analysis results provided new accurate numerical information supported by a graphical representation in regard to the decrease and increase in urban and agricultural lands. Therefore the findings of this study should be considered by decision maker for improving and development the agriculture activities in rural and urban communities.展开更多
The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four ...The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four soil types (i.e., Ari-Sandic Primosols, Calci-Orthic Aridosols, Siltigi-Otrthic Anthrosols, and Ustic Cambosols) in the marginal farmland in the oasis of the middle Hexi Corridor region and was used to determine the characteristics of soil aggregates. The composition of dry- and wet- sieved aggregates and the physical and chemical properties (including soil particle distribution, soil organic carbon (SOC), calcium carbonate (CaCO3), and oxides of Fe^3+ and Al^3+) of the selected soils were analyzed. The results show that soil particle size distribution is dominated by fine sand fraction in most of soils except Ustic Cambosols. Soil organic carbon concentration is 5.88 ± 2.52 g kg^-1 on average, ranging from 4.75 g kg^-1 in Ari-Sandic Primosols to 10.51 g kg^-1 in Ustic Cambosols. The soils have high calcium carbonate (CaCO3) concentration, ranging from 84.7 to 164.8 g kg^-1, which is increased with soil fine particle and organic carbon content. The percentage of 〉0.25 mm dry aggregates ranges from 65.2% in Ari-Sandic Primosols to 94.6% in Ustic Cambosols, and large dry blocky aggregates (〉5 mm) is dominant in all soils. The mean weight diameter of dry aggregates (DMWD) ranges from 3.2 mm to 5.5 mm. The percentage of 〉0.25 mm water-stable aggregate is from 23.8% to 45.4%. The percentage of aggregate destruction (PAD) is from 52.4% to 66.8%, which shows a weak aggregate stability. Ari-Sandic Primosols has the highest PAD. The distribution and characteristics of soil aggregates are in favor of controlling soil wind erosion. However, the stability of aggregate of all soils is weak and soils are prone to disperse and harden after irrigation. The mass of macro-aggregates and DMWD are positively significantly correlated with the contents of soil clay and silt, soil展开更多
文摘Croplands are decreasing due to the expansion of urban areas into rural communities and to some extent due to sand accumulations. Increases in population numbers, new development, in addition to the accumulation of sand and soil salinity are the major driving force leading to abandonment and shrinking of cropland. The aim of this study was to investigate and assess to what extent agricultural lands are affected by urban development in the Al Hassa oasis, Eastern region in Saudi Arabia by employing Landsat time series data of years 1988, 2000 and 2017 as the main source of information. A set of ground truth, control points (GCPs) was also used besides population census data. Unsupervised classifications approach, Normalized Difference Vegetation Index (NDVI) and change detection methods were used here. Urban area during 2000-2017 exhibits much higher increase compared to 1988-2000, while the arable lands declined to −3.4% in 1988-2000 and increased to 22% during 2000-2017. The data analysis results provided new accurate numerical information supported by a graphical representation in regard to the decrease and increase in urban and agricultural lands. Therefore the findings of this study should be considered by decision maker for improving and development the agriculture activities in rural and urban communities.
文摘The composition and stability of soil aggregate are closely related to soil quality, soil erosion, and agricultural sustainability. In this study, 49 soil samples at the 0-10 cm surface layer were collected from four soil types (i.e., Ari-Sandic Primosols, Calci-Orthic Aridosols, Siltigi-Otrthic Anthrosols, and Ustic Cambosols) in the marginal farmland in the oasis of the middle Hexi Corridor region and was used to determine the characteristics of soil aggregates. The composition of dry- and wet- sieved aggregates and the physical and chemical properties (including soil particle distribution, soil organic carbon (SOC), calcium carbonate (CaCO3), and oxides of Fe^3+ and Al^3+) of the selected soils were analyzed. The results show that soil particle size distribution is dominated by fine sand fraction in most of soils except Ustic Cambosols. Soil organic carbon concentration is 5.88 ± 2.52 g kg^-1 on average, ranging from 4.75 g kg^-1 in Ari-Sandic Primosols to 10.51 g kg^-1 in Ustic Cambosols. The soils have high calcium carbonate (CaCO3) concentration, ranging from 84.7 to 164.8 g kg^-1, which is increased with soil fine particle and organic carbon content. The percentage of 〉0.25 mm dry aggregates ranges from 65.2% in Ari-Sandic Primosols to 94.6% in Ustic Cambosols, and large dry blocky aggregates (〉5 mm) is dominant in all soils. The mean weight diameter of dry aggregates (DMWD) ranges from 3.2 mm to 5.5 mm. The percentage of 〉0.25 mm water-stable aggregate is from 23.8% to 45.4%. The percentage of aggregate destruction (PAD) is from 52.4% to 66.8%, which shows a weak aggregate stability. Ari-Sandic Primosols has the highest PAD. The distribution and characteristics of soil aggregates are in favor of controlling soil wind erosion. However, the stability of aggregate of all soils is weak and soils are prone to disperse and harden after irrigation. The mass of macro-aggregates and DMWD are positively significantly correlated with the contents of soil clay and silt, soil