As for unmanned aircraft, the knowledge of the aircraft performance is directly related with the navigation, guidance, and control system programming. Therefore, the measured data in each phase of the flight must be s...As for unmanned aircraft, the knowledge of the aircraft performance is directly related with the navigation, guidance, and control system programming. Therefore, the measured data in each phase of the flight must be sufficiently precise to obtain a good characterization of aircraft.This article proposes new methods of sending information to ground, which make it possible to know the aircraft behavior accurately, and for this purpose, four contributions have been made for ALO(Avión Ligero de Observación, Spanish acronym for Light Observation Aircraft). Currently, the characterization is based on data obtained at ten samples per second, insufficient to acquire detailed knowledge of what happened during the whole flight of an aircraft. As a result of these contributions, many more samples per second of accelerations and angular velocities are obtained at the most critical moments of the flight, such as takeoff or landing. Among the improvements included are data compression techniques, providing references to locate the measured data in time and identifying labels of each parameter.展开更多
We performed systematic studies on the effects of event-by-event efficiency fluctuations on efficiency correction for cumulant analysis in relativistic heavy-ion collision experiments. Experimentally, particle eficien...We performed systematic studies on the effects of event-by-event efficiency fluctuations on efficiency correction for cumulant analysis in relativistic heavy-ion collision experiments. Experimentally, particle eficiencies of events measured under different experimental conditions should be different. For fluctuation measurements, the final event-by-event multiplicity distributions should be the superposed distributions of various type of events measured under different conditions. We demonstrate efficiency fluctuation effects using numerical simulation, in which we construct an event ensemble consisting of events with two different efficiencies. By using the mean particle efficiencies, we find that the efficiency corrected cumulants show large deviations from the original inputs when the discrepancy between the two efficiencies is large. We further studied the effects of efficiency fluctuations for the cumulants of net-proton distributions by implementing the UrQMD events of Au+Au collisions at √SNN=7.7 GeV in a realistic STAR detector acceptance. We consider the unequal efficiency in two sides of the Time Projection Chamber (TPC), multiplicity dependent efficiency, and the event-by-event variations of the collision vertex position along the longitudinal direction (Vz). When the efficiencies fluctuate dramatically within the studied event sample, the effects of efficiency fluctuations have significant impacts on the efficiency corrections of cumulants with the mean efficiencies. We find that this effect can be effectively suppressed by binning the entire event ensemble into various sub-event samples, in which the efficiency variations are relatively small. The final efficiency corrected cumulants can be calculated from the weighted average of the corrected factorial moments of the sub-event samples with the mean efficiencies.展开更多
Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in...Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler-Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.展开更多
The possible experimentally observable signal in momentum space for the critical point, which is free from the contamination of statistical fluctuations, is discussed. It is shown that the higher order scaled moment o...The possible experimentally observable signal in momentum space for the critical point, which is free from the contamination of statistical fluctuations, is discussed. It is shown that the higher order scaled moment of transverse momentum can serve as an appropriate signal for the critical point, provided the transverse momentum distribution has a sudden change when energy increases passing through this point. A 2-D percolation model with a linear temperature gradient is constructed to check this suggestion. A sudden change of third order scaled moment of transverse momentum is observed.展开更多
文摘As for unmanned aircraft, the knowledge of the aircraft performance is directly related with the navigation, guidance, and control system programming. Therefore, the measured data in each phase of the flight must be sufficiently precise to obtain a good characterization of aircraft.This article proposes new methods of sending information to ground, which make it possible to know the aircraft behavior accurately, and for this purpose, four contributions have been made for ALO(Avión Ligero de Observación, Spanish acronym for Light Observation Aircraft). Currently, the characterization is based on data obtained at ten samples per second, insufficient to acquire detailed knowledge of what happened during the whole flight of an aircraft. As a result of these contributions, many more samples per second of accelerations and angular velocities are obtained at the most critical moments of the flight, such as takeoff or landing. Among the improvements included are data compression techniques, providing references to locate the measured data in time and identifying labels of each parameter.
基金Supported by the MoST of China 973-Project No.2015CB856901NSFC(11575069)
文摘We performed systematic studies on the effects of event-by-event efficiency fluctuations on efficiency correction for cumulant analysis in relativistic heavy-ion collision experiments. Experimentally, particle eficiencies of events measured under different experimental conditions should be different. For fluctuation measurements, the final event-by-event multiplicity distributions should be the superposed distributions of various type of events measured under different conditions. We demonstrate efficiency fluctuation effects using numerical simulation, in which we construct an event ensemble consisting of events with two different efficiencies. By using the mean particle efficiencies, we find that the efficiency corrected cumulants show large deviations from the original inputs when the discrepancy between the two efficiencies is large. We further studied the effects of efficiency fluctuations for the cumulants of net-proton distributions by implementing the UrQMD events of Au+Au collisions at √SNN=7.7 GeV in a realistic STAR detector acceptance. We consider the unequal efficiency in two sides of the Time Projection Chamber (TPC), multiplicity dependent efficiency, and the event-by-event variations of the collision vertex position along the longitudinal direction (Vz). When the efficiencies fluctuate dramatically within the studied event sample, the effects of efficiency fluctuations have significant impacts on the efficiency corrections of cumulants with the mean efficiencies. We find that this effect can be effectively suppressed by binning the entire event ensemble into various sub-event samples, in which the efficiency variations are relatively small. The final efficiency corrected cumulants can be calculated from the weighted average of the corrected factorial moments of the sub-event samples with the mean efficiencies.
文摘Delaminations in structures may significantly reduce the stiffness and strength of the structures and may affect their vibration characteristics. As structural components, beams have been used for various purposes, in many of which beams are often subjected to axial loads and static end moments. In the present study, an analytical solution is developed to study the coupled bending-torsion vibration of a homogeneous beam with a single delamination subjected to axial loads and static end moments. Euler-Bernoulli beam theory and the "free mode" assumption in delamination vibration are adopted. This is the first study of the influences of static end moments upon the effects of delaminations on natural frequencies, critical buckling loads and critical moments for lateral instability. The results show that the effects of delamination on reducing natural frequencies, critical buckling load and critical moment for lateral instability are aggravated by the presence of static end moment. In turn, the effects of static end moments on vibration and instability characteristics are affected by the presence of delamination. The analytical results of this study can serve as a benchmark for finite element method and other numerical solutions.
基金Supported by National Natural Science Foundation of China (10775056, 10835005)
文摘The possible experimentally observable signal in momentum space for the critical point, which is free from the contamination of statistical fluctuations, is discussed. It is shown that the higher order scaled moment of transverse momentum can serve as an appropriate signal for the critical point, provided the transverse momentum distribution has a sudden change when energy increases passing through this point. A 2-D percolation model with a linear temperature gradient is constructed to check this suggestion. A sudden change of third order scaled moment of transverse momentum is observed.