The China high speed railway vehicles of type CRH2 and type CRH3, modeled on Japanese high speed Electric Multiple Units (EMU) E2 series and Euro high speed EMU ICE3 series possess different stability behaviors due to...The China high speed railway vehicles of type CRH2 and type CRH3, modeled on Japanese high speed Electric Multiple Units (EMU) E2 series and Euro high speed EMU ICE3 series possess different stability behaviors due to the different matching re-lations between bogie parameters and wheel profiles. It is known from the field tests and roller rig tests that, the former has a higher critical speed while large limit cycle oscillation appears if instability occurs, and the latter has lower critical speed while small limit cycle appears if instability occurs. The dynamic model of the vehicle system including a semi-carbody and a bogie is established in this paper. The bifurcation diagrams of the two types of high speed vehicles are extensively studied. By using the method of normal form of Hopf bifurcation, it is found that the subcritical and supercritical bifurcations exist in the two types of vehicle systems. The influence of parameter variation on the exported function Rec1(0) in Hopf normal form is studied and numerical shooting method is also used for mutual verification. Furthermore, the bifurcation situation, subcritical or supercritical, is also discussed. The study shows that the sign of Re(λ) determinates the stability of linear system, and the sign of Rec1(0) determines the property of Hopf bifurcation with Rec1(0)】0 for supercritical and Rec1(0)【0 for subcritical.展开更多
This study focuses on the stability and local bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals analytically,and numerically.The analytical results are obtained usi...This study focuses on the stability and local bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals analytically,and numerically.The analytical results are obtained using thenormal form technique and numerical results are obtained using the numerical continuation method.For this model,a number of bifurcations are studied,including the transcritical(pitchfork)and fip bifurcations,the Neimark-Sacker(NS)bifurcations,and the strong resonance bifurcations.We especially determine the dynamical behaviors of the model for higher iterations up to fourth-order.Numerical simulation is employed to present a closed invariant curve emerging about an NS point,and its breaking down to several closed invariant curves and eventuality giving rise to a chaotic strange attractor by increasing the bifurcation parameter.展开更多
Much effort has gone into constructing Dirichlet forms to define Laplacians on self-similar sets. However, the results have only been successful on p.c.f. (post critical finite) fractals. We prove the existence of a...Much effort has gone into constructing Dirichlet forms to define Laplacians on self-similar sets. However, the results have only been successful on p.c.f. (post critical finite) fractals. We prove the existence of a Dirichlet form on a class of non- p.c.f. sets that are the product of variational fractals.展开更多
基金supported by the National Basic Research Program of China ("973" Program) (Grant No. 2011CB711106)the National Key Technology R&D Program of China (Grant No. 2009BAG12A01)Southwest Jiaotong University 1st Outstanding Innovative Talents Fund and the Doctoral Student Innovation Fund of Southwest Jiaotong University
文摘The China high speed railway vehicles of type CRH2 and type CRH3, modeled on Japanese high speed Electric Multiple Units (EMU) E2 series and Euro high speed EMU ICE3 series possess different stability behaviors due to the different matching re-lations between bogie parameters and wheel profiles. It is known from the field tests and roller rig tests that, the former has a higher critical speed while large limit cycle oscillation appears if instability occurs, and the latter has lower critical speed while small limit cycle appears if instability occurs. The dynamic model of the vehicle system including a semi-carbody and a bogie is established in this paper. The bifurcation diagrams of the two types of high speed vehicles are extensively studied. By using the method of normal form of Hopf bifurcation, it is found that the subcritical and supercritical bifurcations exist in the two types of vehicle systems. The influence of parameter variation on the exported function Rec1(0) in Hopf normal form is studied and numerical shooting method is also used for mutual verification. Furthermore, the bifurcation situation, subcritical or supercritical, is also discussed. The study shows that the sign of Re(λ) determinates the stability of linear system, and the sign of Rec1(0) determines the property of Hopf bifurcation with Rec1(0)】0 for supercritical and Rec1(0)【0 for subcritical.
文摘This study focuses on the stability and local bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals analytically,and numerically.The analytical results are obtained using thenormal form technique and numerical results are obtained using the numerical continuation method.For this model,a number of bifurcations are studied,including the transcritical(pitchfork)and fip bifurcations,the Neimark-Sacker(NS)bifurcations,and the strong resonance bifurcations.We especially determine the dynamical behaviors of the model for higher iterations up to fourth-order.Numerical simulation is employed to present a closed invariant curve emerging about an NS point,and its breaking down to several closed invariant curves and eventuality giving rise to a chaotic strange attractor by increasing the bifurcation parameter.
文摘Much effort has gone into constructing Dirichlet forms to define Laplacians on self-similar sets. However, the results have only been successful on p.c.f. (post critical finite) fractals. We prove the existence of a Dirichlet form on a class of non- p.c.f. sets that are the product of variational fractals.