A self-consistent creep damage constitutive model and a finite element model have been developed for nickel-base directionally solidified superalloys. Grain degradation and grain boundary voiding are considered. The m...A self-consistent creep damage constitutive model and a finite element model have been developed for nickel-base directionally solidified superalloys. Grain degradation and grain boundary voiding are considered. The model parameters are determined from the creep test data of a single crystal and a directionally solidified superalloy with a special crystallographic orientation. The numerical analysis shows that the modeled creep damage behaviors of nickel-base directionally solidified super-alloys with different crystallographic orientations are in good agreement with the experimental data.展开更多
文摘A self-consistent creep damage constitutive model and a finite element model have been developed for nickel-base directionally solidified superalloys. Grain degradation and grain boundary voiding are considered. The model parameters are determined from the creep test data of a single crystal and a directionally solidified superalloy with a special crystallographic orientation. The numerical analysis shows that the modeled creep damage behaviors of nickel-base directionally solidified super-alloys with different crystallographic orientations are in good agreement with the experimental data.