Understanding the effects of land cover changes on ecosystem carbon stocks is essential for ecosystem management and envi- ronmental protection, particularly in the transboundary region that has undergone marked chang...Understanding the effects of land cover changes on ecosystem carbon stocks is essential for ecosystem management and envi- ronmental protection, particularly in the transboundary region that has undergone marked changes. This study aimed to examine the impacts of land cover changes on ecosystem carbon stocks in the transboundary Tureen River Basin (TTRB). We extracted the spatial information from Landsat Thematic Imager (TM) and Operational Land Imager (OLI) images for the years 1990 and 2015 and obtained convincing estimates of terrestrial biomass and soil carbon stocks with the INVEST model. The results showed that forestland, cropland and built-up land increased by 57.5, 429.7 and 128.9 km2, respectively, while grassland, wetland and barren land declined by 24.9, 548.0 and 43.0 km2, respectively in the TTRB from 1990 to 2015. The total carbon stocks encompassing aboveground, belowground, soil and litter layer carbon storage pools have declined from 831.48 Tg C in 1990 to 831.42 Tg C in 2015 due to land cover changes. In detail, the carbon stocks de- creased by 3.13 Tg C and 0.44 Tg C in Democratic People's Republic of Korea (North Korea) and Russia, respectively, while increased by 3.51 Tg C in China. Furthermore, economic development, and national policy accounted for most land cover changes in the TTRB. Our results imply that effective wetland and forestland protection policies among China, North Korea, and Russia are much needed for protecting the natural resources, promoting local ecosystem services and regional sustainable development in the transnational area.展开更多
A study was conducted to estimate the forest cover change, quantify and map tree above-ground carbon stock using Remote sensing and GIS techniques together with forest inventory. Landsat images of 1980, 1995 and 2010 ...A study was conducted to estimate the forest cover change, quantify and map tree above-ground carbon stock using Remote sensing and GIS techniques together with forest inventory. Landsat images of 1980, 1995 and 2010 acquired during dry season were used in the estimation of cover changes. Supervised image classification using Maximum Likeli-hood Classifier was performed in ERDAS Imagine software to analyze the images and further analysis was performed in Arc GIS 9.3 software. Stratified sampling procedure was used to select concentric inventory plots in Pugu Forest Reserve (PFR) and Kazimzumbwi Forest Reserve (KFR). Plots were laid according to NAFORMA, and the tree parameters in each sampling plot were collected. A Microsoft Excel spreadsheet was used to compute the above-ground bio- mass for each plot using an empirical equation relating wood basic density and tree height. The above-ground carbon was calculated using a conversion factor of 0.49. Geostatistical method in ArcGIS was used to analyze and map carbon. Results revealed that for the periods 1980-1995 and 1995-2010, Closed Forest in PFR decreased by 4.5% and 25.3% respectively, while for KFR, Closed Forest decreased by 11.9% and 31.3% respectively. The mean carbon density for PFR and KFR were respectively 5.72 tC/ha and 0.98 tC/ha while carbon stocks were 14 730.41 tC and 7 206.46 tC re- spectively. The revealed low carbon densities were attributable to decline in area under Closed Forest in the two Forest Reserves. The study recommends concerted efforts to enhance proper management of the forests so that the two forest reserves may contribute to REDD initiatives.展开更多
基金Under the auspices of the National Key Research and Development Project(No.2016YFA0602301)National Natural Science Foundation of China(No.41730643,41671219,41771109,31500400)
文摘Understanding the effects of land cover changes on ecosystem carbon stocks is essential for ecosystem management and envi- ronmental protection, particularly in the transboundary region that has undergone marked changes. This study aimed to examine the impacts of land cover changes on ecosystem carbon stocks in the transboundary Tureen River Basin (TTRB). We extracted the spatial information from Landsat Thematic Imager (TM) and Operational Land Imager (OLI) images for the years 1990 and 2015 and obtained convincing estimates of terrestrial biomass and soil carbon stocks with the INVEST model. The results showed that forestland, cropland and built-up land increased by 57.5, 429.7 and 128.9 km2, respectively, while grassland, wetland and barren land declined by 24.9, 548.0 and 43.0 km2, respectively in the TTRB from 1990 to 2015. The total carbon stocks encompassing aboveground, belowground, soil and litter layer carbon storage pools have declined from 831.48 Tg C in 1990 to 831.42 Tg C in 2015 due to land cover changes. In detail, the carbon stocks de- creased by 3.13 Tg C and 0.44 Tg C in Democratic People's Republic of Korea (North Korea) and Russia, respectively, while increased by 3.51 Tg C in China. Furthermore, economic development, and national policy accounted for most land cover changes in the TTRB. Our results imply that effective wetland and forestland protection policies among China, North Korea, and Russia are much needed for protecting the natural resources, promoting local ecosystem services and regional sustainable development in the transnational area.
文摘A study was conducted to estimate the forest cover change, quantify and map tree above-ground carbon stock using Remote sensing and GIS techniques together with forest inventory. Landsat images of 1980, 1995 and 2010 acquired during dry season were used in the estimation of cover changes. Supervised image classification using Maximum Likeli-hood Classifier was performed in ERDAS Imagine software to analyze the images and further analysis was performed in Arc GIS 9.3 software. Stratified sampling procedure was used to select concentric inventory plots in Pugu Forest Reserve (PFR) and Kazimzumbwi Forest Reserve (KFR). Plots were laid according to NAFORMA, and the tree parameters in each sampling plot were collected. A Microsoft Excel spreadsheet was used to compute the above-ground bio- mass for each plot using an empirical equation relating wood basic density and tree height. The above-ground carbon was calculated using a conversion factor of 0.49. Geostatistical method in ArcGIS was used to analyze and map carbon. Results revealed that for the periods 1980-1995 and 1995-2010, Closed Forest in PFR decreased by 4.5% and 25.3% respectively, while for KFR, Closed Forest decreased by 11.9% and 31.3% respectively. The mean carbon density for PFR and KFR were respectively 5.72 tC/ha and 0.98 tC/ha while carbon stocks were 14 730.41 tC and 7 206.46 tC re- spectively. The revealed low carbon densities were attributable to decline in area under Closed Forest in the two Forest Reserves. The study recommends concerted efforts to enhance proper management of the forests so that the two forest reserves may contribute to REDD initiatives.