This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on componen...This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.展开更多
This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant fo...This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.展开更多
This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomati...This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis.展开更多
This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant de...This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.展开更多
The stability of the linear chain structure of three α clusters for 12C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved o...The stability of the linear chain structure of three α clusters for 12C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the inverse Hamiltonian and the Fourier spectral methods. Starting from a twisted three α initial configuration, it is found that the linear chain structure is stable when the rotational frequency is within the range of ~2.0-~2.5 MeV. Beyond this range, the final states are not stable against fission. By examining the density distributions and the occupation of single-particle levels, however, these fissions are found to arise from the occupation of unphysical continuum with large angular momenta. To properly remove these unphysical continuum, a damping function for the cranking term is introduced. Eventually, the stable linear chain structure could survive up to the rotational frequency ~3.5 MeV, but the fission still occurs when the rotational frequency approaches ~4.0 MeV.展开更多
This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with...This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.展开更多
The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from ...The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.展开更多
The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like app...The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like approach. The ground states of 12^C and 160 have been calculated and the density distributions demonstrate an equilateral triangle 3α clustering for 12^C and a regular tetrahedron 4α clustering for 16^O The existence of linear nα chain structure of both 12^C and 16^O is revealed at high quadrupole deformation.展开更多
The notions of quasi k-Gorenstein algebras and W^t-approximation representations are introduced. The existence and uniqueness (up to projective equivalences) of W^t-approximation representations over quasi k-Gorenstei...The notions of quasi k-Gorenstein algebras and W^t-approximation representations are introduced. The existence and uniqueness (up to projective equivalences) of W^t-approximation representations over quasi k-Gorenstein algebras are established. Some applications of W^t-approximation representations to homologically finite subcategories are given.展开更多
The g factors and spectroscopic quadrupole moments of low-lying excited states 2+1,…,81+ in 24Mg are studied in a covariant density functional theory.The wave functions are constructed by configuration mixing of axia...The g factors and spectroscopic quadrupole moments of low-lying excited states 2+1,…,81+ in 24Mg are studied in a covariant density functional theory.The wave functions are constructed by configuration mixing of axially deformed mean-field states projected on good angular momentum.The mean-field states are obtained from the constraint relativistic point-coupling model plus BCS calculations using the PC-F1 parametrization for the particle-hole channel and a density-independent delta-force for the particle-particle channel.The available experimental g factor and spectroscopic quadrupole moment of 21+ state are reproduced quite well.The angular momentum dependence of g factors and spectroscopic quadrupole moments,as well as the effects of pairing correlations are investigated.展开更多
Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativis...Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian.We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the;S——0 and;P;phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥1, the relativistic results are almost the same as their leading order non-relativistic counterparts.展开更多
Let г^+ be the positive cone of a totally ordered abelian group г, and σa cocycle in г. We study the twisted crossed products by actions of г+ as endomorphisms of C^*-algebras, and use this to generalize the t...Let г^+ be the positive cone of a totally ordered abelian group г, and σa cocycle in г. We study the twisted crossed products by actions of г+ as endomorphisms of C^*-algebras, and use this to generalize the theorem of Ji.展开更多
The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how doe...The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how does it correlate to the Perelman mappings from the homogeneous 5D manifold to the Lorentz 4D manifold, together with correlating the physical consequences caused by the breaking of the Diagonal Long Range Order [DLRO] of the monopoles quantum states affected by the motion of massive particles in the Lorentz 4D boundary of the 5D manifold, which leads to gravitons and the gravity field via the General Relativity covariant Riemannian 4D curvatures metric equation.展开更多
We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetri...We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.展开更多
Recently, reconsidering the Rastall idea T_(μ;νν)^(v)=α_(,μ) through relativistic thermodynamics gives a new form for the scalar field α which led us to construct modern modified theory of gravity debugged ‘non...Recently, reconsidering the Rastall idea T_(μ;νν)^(v)=α_(,μ) through relativistic thermodynamics gives a new form for the scalar field α which led us to construct modern modified theory of gravity debugged ‘non-conserved gravity theory’ Fazlollahi 2023 Euro. Phys. J. C 83 923. This theory unlike other modified theories of gravity cannot directly explain the current acceleration expansion in the absence of the cosmological constant and or existence of other forms of dark energy. Hence, in this study we have reinvestigated holographic dark energy Ρ_(X)~H^(2) in the non-conserved theory of gravity. In this context, the density and pressure of dark energy depend on the non-conserved term and density of the dust matter field. As shown, due to non-conservation effects on large-scale structures, unlike the original holographic model, our model onsets an acceleration epoch for the current Universe satisfies observations. Moreover, the interaction and viscous scenarios are studied for this model.展开更多
Magicity,or shell closure,plays an important role in our understanding of complex nuclear phenomena.In this work,we employ one of the state-of-the-art density functional theories,the deformed relativistic Hartree-Bogo...Magicity,or shell closure,plays an important role in our understanding of complex nuclear phenomena.In this work,we employ one of the state-of-the-art density functional theories,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)with the density functional PC-PK1,to investigate the evolution of the N=20,28,50 shell closures in the 20≤Z≤30 region.We show how these three conventional shell closures evolve from the proton drip line to the neutron drip line by studying the charge radii,two-neutron separation energies,two-neutron gaps,quadrupole deformations,and single-particle levels.In particular,we find that in the 21≤Z≤27 region,the N=50 shell closure disappears or becomes quenched,mainly due to the deformation effects.Similarly,both experimental data and theoretical predictions indicate that the N=28 shell closure disappears in the Mn isotopic chain,mainly due to the deformation effects.The DRHBc theory predicts the existence of the N=20 shell closure in the Ca,Sc,and Ti isotopic chains,but the existing data for the Ti isotopes suggest the contrary,and therefore further research is needed.展开更多
Radiative decays D((s))*→D((s))γare revisited in light of new experimental data from the BaBar and BESⅢCollaborations.The radiative couplings gD*Dγencoding nonperturbative QCD effects are calculated in the framewo...Radiative decays D((s))*→D((s))γare revisited in light of new experimental data from the BaBar and BESⅢCollaborations.The radiative couplings gD*Dγencoding nonperturbative QCD effects are calculated in the framework of the covariant confined quark model developed by us.We compare our results with other theoretical studies and experimental data.The couplings(in GeV-1)|g(D*+D+γ)|=0.45(9)and|g(D*0D0γ)|=1.72(34)calculated in our model agree with the corresponding experimental data|g(D*+D+γ)|=0.47(7)and|g(D*0D0γ)|=1.77(16).The most interesting case is the decay Ds*→Dsγ,for which a recent prediction based on light-cone sum rules at next-to-leading order|gDs*Dsγ|=0.60(19)deviates from the first(and only to date)lattice QCD result|gDs*Dsγ|=0.11(2)at nearly3σ.Our calculation yields|gDs*Dsγ|=0.29(6),which falls somehow between the two mentioned results,although it is larger than those predicted in other studies using quark models or QCD sum rules.展开更多
The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted ...The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.展开更多
The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in c...The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.展开更多
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the covariant derivative un der curved coordinate systems in 3D Euclid space. Based on the axiom of the covariant form invariability, the classical covariant derivative that can only act on components is ex tended to the generalized covariant derivative that can act on any geometric quantity including base vectors, vectors and tensors. Under the axiom, the algebra structure of the gen eralized covariant derivative is proved to be covariant dif ferential ring. Based on the powerful operation capabilities and simple analytical properties of the generalized covariant derivative, the tensor analysis in curved coordinate systems is simplified to a large extent.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper extends the classical covariant deriva tive to the generalized covariant derivative on curved sur faces. The basement for the extension is similar to the pre vious paper, i.e., the axiom of the covariant form invariabil ity. Based on the generalized covariant derivative, a covari ant differential transformation group with orthogonal duality is set up. Through such orthogonal duality, tensor analy sis on curved surfaces is simplified intensively. Under the covariant differential transformation group, the differential invariabilities and integral invariabilities are constructed on curved surfaces.
基金supported by the National Natural Science Foundation of China(Nos.11072125 and11272175)the Natural Science Foundation of Jiangsu Province(No.SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(No.20130002110044)
文摘This paper reports the new progresses in the axiomatization of tensor anal- ysis, including the thought of axiomatization, the concept of generalized components, the axiom of covariant form invariability, the axiomatized definition, the algebraic structure, the transformation group, and the simple calculation of generalized covariant differentia- tions. These progresses strengthen the tendency of the axiomatization of tensor analysis.
基金supported by the NSFC(11072125 and 11272175)the NSF of Jiangsu Province(SBK201140044)the Specialized Research Fund for Doctoral Program of Higher Education(20130002110044)
文摘This paper further extends the generalized covari ant derivative from the first covariant derivative to the sec ond one on curved surfaces. Through the linear transforma tion between the first generalized covariant derivative and the second one, the second covariant differential transformation group is set up. Under this transformation group, the sec ond class of differential invariants and integral invariants on curved surfaces is made clear. Besides, the symmetric struc ture of the tensor analysis on curved surfaces are revealed.
基金supported by the National Key R&D Program of China(Grant Nos.2018YFA0404400,and 2017YFE0116700)the National Natural Science Foundation of China(Grant Nos.11621131001,and 11875075)the Laboratory Computing Resource Center at Argonne National Laboratory
文摘The stability of the linear chain structure of three α clusters for 12C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the inverse Hamiltonian and the Fourier spectral methods. Starting from a twisted three α initial configuration, it is found that the linear chain structure is stable when the rotational frequency is within the range of ~2.0-~2.5 MeV. Beyond this range, the final states are not stable against fission. By examining the density distributions and the occupation of single-particle levels, however, these fissions are found to arise from the occupation of unphysical continuum with large angular momenta. To properly remove these unphysical continuum, a damping function for the cranking term is introduced. Eventually, the stable linear chain structure could survive up to the rotational frequency ~3.5 MeV, but the fission still occurs when the rotational frequency approaches ~4.0 MeV.
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘This paper reports a new derivative in the Eulerian description in flat space-the generalized covariant derivative with respect to time. The following contents are included:(a) the restricted covariant derivative with respect to time for Eulerian component is defined;(b) the postulate of the covariant form invariability in time field is set up;(c) the generalized covariant derivative with respect to time for generalized Eulerian component is defined;(d) the algebraic structure of the generalized covariant derivative with respect to time is made clear;(e) the covariant differential transformation group in time filed is derived. These progresses reveal the covariant form invariability of Eulerian space and time.
基金Project supported by the National Natural Sciences Foundation of China(No.11272175)the Specialized Research Found for Doctoral Program of Higher Education(No.20130002110044)
文摘The previous paper reported a new derivative in the Eulerian description in flat space—the generalized covariant derivative of generalized Eulerian component with respect to time. This paper extends the thought from the Eulerian description to the Lagrangian description:on the basis of the postulate of covariant form invariability in time field, we define a new derivative in the Lagrangian description in flat space—the generalized covariant derivative of generalized Lagrangian component with respect to time. Besides, the covariant differential transformation group is set up. The covariant form invariability of Lagrangian space-time is ascertained.
基金Supported by Major State Basic Research Development (973) Program (2007CB815000)NSFC (11175002,11105005)Research Fund for the Doctoral Program of Higher Education (20110001110087)
文摘The α-cluster structures for 12^C and 16^O are investigated in the framework of the covariant density functional theory, where the pairing correlation is treated with a particle number conserving shell-model-like approach. The ground states of 12^C and 160 have been calculated and the density distributions demonstrate an equilateral triangle 3α clustering for 12^C and a regular tetrahedron 4α clustering for 16^O The existence of linear nα chain structure of both 12^C and 16^O is revealed at high quadrupole deformation.
文摘The notions of quasi k-Gorenstein algebras and W^t-approximation representations are introduced. The existence and uniqueness (up to projective equivalences) of W^t-approximation representations over quasi k-Gorenstein algebras are established. Some applications of W^t-approximation representations to homologically finite subcategories are given.
基金supported by the National Basic Research Program of China (Grant No.2007CB815000)the National Natural Science Foundation of China (Grant Nos.10947013, 10975008, 10705004 and 10775004)+3 种基金the Fundamental Research Funds for the Center Universities(Grant No.XDJK2010B007)the Southwest University Initial Research Foundation Grant to Doctor (Grant No.SWU109011)the Bundesministerium fur Bildung und Forschung,Germany (Grant No.06 MT 246)the DFG cluster of excellence "Origin and Structure of the Universe"(www.universe-clusterde)
文摘The g factors and spectroscopic quadrupole moments of low-lying excited states 2+1,…,81+ in 24Mg are studied in a covariant density functional theory.The wave functions are constructed by configuration mixing of axially deformed mean-field states projected on good angular momentum.The mean-field states are obtained from the constraint relativistic point-coupling model plus BCS calculations using the PC-F1 parametrization for the particle-hole channel and a density-independent delta-force for the particle-particle channel.The available experimental g factor and spectroscopic quadrupole moment of 21+ state are reproduced quite well.The angular momentum dependence of g factors and spectroscopic quadrupole moments,as well as the effects of pairing correlations are investigated.
基金Supported by National Natural Science Foundation of China(11375024,11522539,11335002,11375120)DFG and NSFC through funds provided to the Sino-German CRC 110“Symmetries and the Emergence of Structure in QCD”(NSFC Grant No.11621131001,DFG Grant No.TRR110)+3 种基金the Major State 973 Program of China(2013CB834400)the China Postdoctoral Science Foundation(2016M600845,2017T100008)the Fundamental Research Funds for the Central Universitiesby the DFG cluster of excellence Origin and Structure of the Universe(www.universe-cluster.de)
文摘Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian.We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the;S——0 and;P;phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥1, the relativistic results are almost the same as their leading order non-relativistic counterparts.
基金the Academy of Sciences of Malaysia through SAGA Projectthe Indonesian Research Fund for Doctorate Sandwich Programs(URGE)
文摘Let г^+ be the positive cone of a totally ordered abelian group г, and σa cocycle in г. We study the twisted crossed products by actions of г+ as endomorphisms of C^*-algebras, and use this to generalize the theorem of Ji.
文摘The expression of the Maxwell magnetic monopole was employed to correlate the space to space projection that gives rise to the Gell-Mann standard model, and space to time projection which gives the leptons;and how does it correlate to the Perelman mappings from the homogeneous 5D manifold to the Lorentz 4D manifold, together with correlating the physical consequences caused by the breaking of the Diagonal Long Range Order [DLRO] of the monopoles quantum states affected by the motion of massive particles in the Lorentz 4D boundary of the 5D manifold, which leads to gravitons and the gravity field via the General Relativity covariant Riemannian 4D curvatures metric equation.
基金supported by the National Natural Science Foundation of China (Nos. 12465020, 12005802, and 12005109)the Jiangxi Provincial Natural Science Foundation (20202BAB211008)+3 种基金the Jiangxi Normal University (JXNU) Initial Research Foundation Grant to Doctor (12019504)the Young Talents Program under JXNU (12019870)the PhD Foundation of Chongqing Normal University (No. 23XLB010)the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJQN202300509)
文摘We report a comprehensive study on low-lying parity doublet states of ^(224)Rn by mixing both quadrupole-and octupoleshaped configurations in multireference covariant density functional theory,in which broken symmetries in configurations are restored using projection techniques.The low-lying energy spectrum is reasonably reproduced when the shape fluctuations in both the quadrupole and octupole shapes are considered.Electric octupole transition strength in ^(224)Rn is found to be B(E3;3_(1)^(-)→0_(1)^(+))=43 W.u.,comparable to that in ^(224)Ra,whose data are 42(3)W.u..Our results indicate that ^(224)Rn shares similar low-energy structure with ^(224)Ra despite the excitation energy of first 3^(−)state of the former nucleus is higher than that of the latter.This study suggests ^(224)Rn is a candidate for the search for permanent electric dipole moment.
文摘Recently, reconsidering the Rastall idea T_(μ;νν)^(v)=α_(,μ) through relativistic thermodynamics gives a new form for the scalar field α which led us to construct modern modified theory of gravity debugged ‘non-conserved gravity theory’ Fazlollahi 2023 Euro. Phys. J. C 83 923. This theory unlike other modified theories of gravity cannot directly explain the current acceleration expansion in the absence of the cosmological constant and or existence of other forms of dark energy. Hence, in this study we have reinvestigated holographic dark energy Ρ_(X)~H^(2) in the non-conserved theory of gravity. In this context, the density and pressure of dark energy depend on the non-conserved term and density of the dust matter field. As shown, due to non-conservation effects on large-scale structures, unlike the original holographic model, our model onsets an acceleration epoch for the current Universe satisfies observations. Moreover, the interaction and viscous scenarios are studied for this model.
基金Supported in part by the National Natural Science Foundation of China(NSFC)(11975041,11961141004)Xiang-Xiang Sun is supported in part by NSFC(12205308)the Deutsche Forschungsgemeinschaft(DFG)and NSFC through the funds provided to the Sino-German Collaborative Research Center TRR110"Symmetries and the Emergence of Structure in QCD"(NSFC Grant No.12070131001,DFG Project-ID 196253076)。
文摘Magicity,or shell closure,plays an important role in our understanding of complex nuclear phenomena.In this work,we employ one of the state-of-the-art density functional theories,the deformed relativistic Hartree-Bogoliubov theory in continuum(DRHBc)with the density functional PC-PK1,to investigate the evolution of the N=20,28,50 shell closures in the 20≤Z≤30 region.We show how these three conventional shell closures evolve from the proton drip line to the neutron drip line by studying the charge radii,two-neutron separation energies,two-neutron gaps,quadrupole deformations,and single-particle levels.In particular,we find that in the 21≤Z≤27 region,the N=50 shell closure disappears or becomes quenched,mainly due to the deformation effects.Similarly,both experimental data and theoretical predictions indicate that the N=28 shell closure disappears in the Mn isotopic chain,mainly due to the deformation effects.The DRHBc theory predicts the existence of the N=20 shell closure in the Ca,Sc,and Ti isotopic chains,but the existing data for the Ti isotopes suggest the contrary,and therefore further research is needed.
基金Supported by Ho Chi Minh City University of Technology and Education(T2022-26)。
文摘Radiative decays D((s))*→D((s))γare revisited in light of new experimental data from the BaBar and BESⅢCollaborations.The radiative couplings gD*Dγencoding nonperturbative QCD effects are calculated in the framework of the covariant confined quark model developed by us.We compare our results with other theoretical studies and experimental data.The couplings(in GeV-1)|g(D*+D+γ)|=0.45(9)and|g(D*0D0γ)|=1.72(34)calculated in our model agree with the corresponding experimental data|g(D*+D+γ)|=0.47(7)and|g(D*0D0γ)|=1.77(16).The most interesting case is the decay Ds*→Dsγ,for which a recent prediction based on light-cone sum rules at next-to-leading order|gDs*Dsγ|=0.60(19)deviates from the first(and only to date)lattice QCD result|gDs*Dsγ|=0.11(2)at nearly3σ.Our calculation yields|gDs*Dsγ|=0.29(6),which falls somehow between the two mentioned results,although it is larger than those predicted in other studies using quark models or QCD sum rules.
基金supported by the National Natural Science Foundation of China(No.12205103)。
文摘The covariant density functional theory(CDFT)and five-dimensional collective Hamiltonian(5DCH)are used to analyze the experimental deformation parameters and moments of inertia(MoIs)of 12 triaxial nuclei as extracted by Allmond and Wood[J.M.Allmond and J.L.Wood,Phys.Lett.B 767,226(2017)].We find that the CDFT MoIs are generally smaller than the experimental values but exhibit qualitative consistency with the irrotational flow and experimental data for the relative MoIs,indicating that the intermediate axis exhibites the largest MoI.Additionally,it is found that the pairing interaction collapse could result in nuclei behaving as a rigid-body flow,as exhibited in the^(186-192)Os case.Furthermore,by incorporating enhanced CDFT MoIs(factor of f≈1.55)into the 5DCH,the experimental low-lying energy spectra and deformation parameters are reproduced successfully.Compared with both CDFT and the triaxial rotor model,the 5DCH demonstrates superior agreement with the experimental deformation parameters and low-lying energy spectra,respectively,emphasizing the importance of considering shape fluctuations.
基金supported by the“Human Resources Program in Energy Technol-ogy”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and Granted Financial Resources from the Ministry of Trade,Industry,and Energy,Republic of Korea(No.20204010600090)The funding of this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘The demand for a non-contact biometric approach for candidate identification has grown over the past ten years.Based on the most important biometric application,human gait analysis is a significant research topic in computer vision.Researchers have paid a lot of attention to gait recognition,specifically the identification of people based on their walking patterns,due to its potential to correctly identify people far away.Gait recognition systems have been used in a variety of applications,including security,medical examinations,identity management,and access control.These systems require a complex combination of technical,operational,and definitional considerations.The employment of gait recognition techniques and technologies has produced a number of beneficial and well-liked applications.Thiswork proposes a novel deep learning-based framework for human gait classification in video sequences.This framework’smain challenge is improving the accuracy of accuracy gait classification under varying conditions,such as carrying a bag and changing clothes.The proposed method’s first step is selecting two pre-trained deep learningmodels and training fromscratch using deep transfer learning.Next,deepmodels have been trained using static hyperparameters;however,the learning rate is calculated using the particle swarmoptimization(PSO)algorithm.Then,the best features are selected from both trained models using the Harris Hawks controlled Sine-Cosine optimization algorithm.This algorithm chooses the best features,combined in a novel correlation-based fusion technique.Finally,the fused best features are categorized using medium,bi-layer,and tri-layered neural networks.On the publicly accessible dataset known as the CASIA-B dataset,the experimental process of the suggested technique was carried out,and an improved accuracy of 94.14% was achieved.The achieved accuracy of the proposed method is improved by the recent state-of-the-art techniques that show the significance of this work.