This research develops a comparative study between different multiplicative weights that are assigned to the covariance matrix that represents the background error in two hybrid assimilation schemes: 3DEnVAR and 4DEnV...This research develops a comparative study between different multiplicative weights that are assigned to the covariance matrix that represents the background error in two hybrid assimilation schemes: 3DEnVAR and 4DEnVAR. These weights are distributed between the static and time-invariant matrix and the matrix generated from the perturbations of a previous ensemble. The assigned values are 25%, 50%, and 75%, always having as a reference the ensemble matrix. The experiments are applied to the short-range Prediction System (SisPI) that works operationally at the Institute of Meteorology. The impact of Tropical Storm Eta on November 7 and 8, 2020 was selected as a study case. The results suggest that by giving the main weight to the ensemble matrix more realistic solutions are achieved because it shows a better representation of the synoptic flow. On the other hand, it is observed that 3DEnVAR method is more sensitive to multiplicative weight change of the first guess. More realistic results are obtained with 50% and 75% relations with 4DEnVAR method, whereas with 3DEnVAR a weight of 75% for the ensemble matrix is required.展开更多
Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonl...Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly-Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.展开更多
文摘This research develops a comparative study between different multiplicative weights that are assigned to the covariance matrix that represents the background error in two hybrid assimilation schemes: 3DEnVAR and 4DEnVAR. These weights are distributed between the static and time-invariant matrix and the matrix generated from the perturbations of a previous ensemble. The assigned values are 25%, 50%, and 75%, always having as a reference the ensemble matrix. The experiments are applied to the short-range Prediction System (SisPI) that works operationally at the Institute of Meteorology. The impact of Tropical Storm Eta on November 7 and 8, 2020 was selected as a study case. The results suggest that by giving the main weight to the ensemble matrix more realistic solutions are achieved because it shows a better representation of the synoptic flow. On the other hand, it is observed that 3DEnVAR method is more sensitive to multiplicative weight change of the first guess. More realistic results are obtained with 50% and 75% relations with 4DEnVAR method, whereas with 3DEnVAR a weight of 75% for the ensemble matrix is required.
文摘Mark-recapture models are extensively used in quantitative population ecology, providing estimates of population vital rates, such as survival, that are difficult to obtain using other methods. Vital rates are commonly modeled as functions of explanatory covariates, adding considerable flexibility to mark-recapture models, but also increasing the subjectivity and complexity of the modeling process. Consequently, model selection and the evaluation of covariate structure remain critical aspects of mark-recapture modeling. The difficulties involved in model selection are compounded in Cormack-Jolly-Seber models because they are composed of separate sub-models for survival and recapture probabilities, which are conceptualized independently even though their parameters are not statistically independent. The construction of models as combinations of sub-models, together with multiple potential covariates, can lead to a large model set. Although desirable, estimation of the parameters of all models may not be feasible. Strategies to search a model space and base inference on a subset of all models exist and enjoy widespread use. However, even though the methods used to search a model space can be expected to influence parameter estimation, the assessment of covariate importance, and therefore the ecological interpretation of the modeling results, the performance of these strategies has received limited investigation. We present a new strategy for searching the space of a candidate set of Cormack-Jolly-Seber models and explore its performance relative to existing strategies using computer simulation. The new strategy provides an improved assessment of the importance of covariates and covariate combinations used to model survival and recapture probabilities, while requiring only a modest increase in the number of models on which inference is based in comparison to existing techniques.