期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于BP神经网络的遥感影像棉花识别方法 被引量:14
1
作者 范迎迎 钱育蓉 +1 位作者 杨柳 黄震 《计算机工程与设计》 北大核心 2017年第5期1356-1360,共5页
为提高遥感影像棉花识别的精度,提出一种基于反向传播(back propagation,BP)神经网络算法的棉花识别方法。利用单时相GF-1号和Ladsat8遥感数据,结合归一化植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、红波段亮度值(B3)和近... 为提高遥感影像棉花识别的精度,提出一种基于反向传播(back propagation,BP)神经网络算法的棉花识别方法。利用单时相GF-1号和Ladsat8遥感数据,结合归一化植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、红波段亮度值(B3)和近红外波段亮度值(B4)等特征指数,依据野外GPS实测数据选择训练样本,通过不同的特征组合对BP神经网络进行训练。验证结果表明,该识别方法精度达到98.32%,较最大似然法和最小距离法分别提高8.27%和5.53%。实验结果表明,所提方法能够有效地提高棉花识别精度并简化识别过程。 展开更多
关键词 遥感影像 棉花识别 BP神经网络 植被指数 GF-1
下载PDF
基于GF-2影像和Unet模型的棉花分布识别 被引量:9
2
作者 伊尔潘·艾尼瓦尔 买买提·沙吾提 买合木提·巴拉提 《自然资源遥感》 CSCD 北大核心 2022年第2期242-250,共9页
为探讨深度学习方法在干旱区棉花分布识别中的适用性及优化流程,以渭干河—库车河三角绿洲典型作物棉花为研究对象,利用国产GF-2影像,结合野外调查数据,采用Unet深度学习方法,借助Unet网络多重卷积运算的特点充分挖掘棉花在遥感影像上... 为探讨深度学习方法在干旱区棉花分布识别中的适用性及优化流程,以渭干河—库车河三角绿洲典型作物棉花为研究对象,利用国产GF-2影像,结合野外调查数据,采用Unet深度学习方法,借助Unet网络多重卷积运算的特点充分挖掘棉花在遥感影像上的深层次特征,从而提高棉花的提取精度。结果表明,Unet模型提取研究区棉花、玉米、辣椒的识别效果优于面向对象和传统机器学习算法分类结果,总体精度为84.22%,Kappa系数为0.8047,相比面向对象方法以及传统机器学习算法SVM和RF的总体精度分别提高了7.94,11.93和11.73百分点,Kappa系数提高了10.13%,14.72%,14.60%。Unet模型分类结果中,棉花的制图精度和用户精度均高于其余3种方法,分别为94.95%和89.07%。利用Unet模型在GF-2高分辨率遥感影像上高精度提取干旱区棉花空间分布信息具有可行性和可靠性。 展开更多
关键词 深度学习 棉花识别 Unet模型 GF-2影像
下载PDF
基于深度学习的棉花品种识别 被引量:2
3
作者 李海涛 罗维平 《武汉纺织大学学报》 2022年第4期22-26,共5页
棉花作为我国最主要的农产品之一,不仅具有不错的观赏价值,更重要的还是工业原料。棉花的花型不同于其他花卉种类,且不同种类其纤维长度还有所差异。为了解决棉花人工区分效率低的问题,本文基于深度学习方法,以棉花原始的图像数据作为... 棉花作为我国最主要的农产品之一,不仅具有不错的观赏价值,更重要的还是工业原料。棉花的花型不同于其他花卉种类,且不同种类其纤维长度还有所差异。为了解决棉花人工区分效率低的问题,本文基于深度学习方法,以棉花原始的图像数据作为研究对象,通过多层网络学习棉花的特征信息,更加精确区分不同类型的棉花种类。试验结果表明:本文所提出的卷积神经网络CNN-CSC模型相较于传统机器学习方法识别精度提升大约15%,平均精度达到89.17%,为棉花的自动化管理提供了一种有效的手段。 展开更多
关键词 深度学习 卷积神经网络 图像识别 棉花识别
下载PDF
改进的YOLOv3算法在棉花识别中的应用
4
作者 依沙·吾阿提别克 古丽孜亚·艾布列孜 《信息与电脑》 2022年第13期175-177,共3页
棉花是一种密集性农作物,传统YOLOv3算法在识别密集性目标方面准确率较低。为了解决此问题,提出了一种基于改进的YOLOv3算法的棉花识别方法。在传统的YOLOv3算法框架基础上,先加上一道多尺度特征检测通道,使算法更能识别密集性目标,再... 棉花是一种密集性农作物,传统YOLOv3算法在识别密集性目标方面准确率较低。为了解决此问题,提出了一种基于改进的YOLOv3算法的棉花识别方法。在传统的YOLOv3算法框架基础上,先加上一道多尺度特征检测通道,使算法更能识别密集性目标,再自制棉花识别数据集,并使用改进的YOLOv3模型进行实验。结果表明,检测速度高达56.4 fps,目标精度为88.55%,可以完成实际环境中的棉花识别任务。 展开更多
关键词 棉花识别 YOLOv3 棉花检测
下载PDF
基于联盟博弈和极限学习机的棉花异性纤维识别方法 被引量:1
5
作者 赵学华 王名镜 +2 位作者 刘双印 徐龙琴 刘文娟 《仲恺农业工程学院学报》 CAS 2018年第1期46-52,共7页
针对棉花异性纤维(棉花采摘、摊晒、收购、储存、运输及加工过程中混入棉花中的非棉纤维)识别问题,提出了一种基于联盟博弈和极限学习机相融合的棉花异性纤维识别方法,该方法利用基于联盟博弈的特征选择方法确定最优的特征集,随后利用... 针对棉花异性纤维(棉花采摘、摊晒、收购、储存、运输及加工过程中混入棉花中的非棉纤维)识别问题,提出了一种基于联盟博弈和极限学习机相融合的棉花异性纤维识别方法,该方法利用基于联盟博弈的特征选择方法确定最优的特征集,随后利用极限学习机进行棉花异性纤维识别并与支持向量机、k近邻法进行了试验比较.试验结果表明,该方法、支持向量机和k近邻法可以实现的准确率分别为90.15%、88.46%和86.30%.相对于另两种方法,该方法具有最高的识别准确率,并使特征集的特征数由75个降为25个. 展开更多
关键词 棉花异性纤维识别 特征选择 极限学习机
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部