The storage capacity of the batteries in an electric vehicle(EV)could be utilised to store electrical energy and give it back to the grid when needed by participating in vehicle to grid(V2G)schemes.This participation ...The storage capacity of the batteries in an electric vehicle(EV)could be utilised to store electrical energy and give it back to the grid when needed by participating in vehicle to grid(V2G)schemes.This participation could be a source of revenue for vehicle owners thus reducing the total charging cost of their EVs.A V2G simulator has been developed using MATLAB to find out the potential cost saving from participation of EVs in V2G schemes.A standard IEEE30 network has been modelled in the simulator which uses the MATPOWER engine to undertake power flow analysis.A novel control algorithm has been developed to take advantage of the difference between the selling and buying electricity prices by charging and discharging EVs at the appropriate time.Two scenarios are simulated to compare the total charging cost of EVs with or without the utilisation of V2G technology within the power system assuming a total of 5000 EVs.The results of the simulation show that the applied control strategy with V2G is able to reduce the charging cost of EVs by 13.6%while satisfying the minimum requirement for state of charge(SoC)of the EV batteries to complete their next journey.展开更多
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re...The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.展开更多
Hydrogen energy contributes to China’s carbon peaking and carbon neutralization by serving as an important energy carrier.However,the calculation of the cost of hydrogen production by the power grid ignores the curre...Hydrogen energy contributes to China’s carbon peaking and carbon neutralization by serving as an important energy carrier.However,the calculation of the cost of hydrogen production by the power grid ignores the current cost of carbon emissions.To measure the cost of hydrogen-production projects in various provinces more comprehensively and accurately,this study incorporates the carbon-emission cost into the traditional levelized cost of hydrogen model.An analysis of the energy structure of the power supply is conducted in each province of China to calculate carbon-emission costs,which are then subjected to a sensitivity test.Based on the results,the carbon-emission costs for hydrogen in each province are between 0.198 and 1.307 CNY/kg,and the levelized cost of hydrogen based on carbon-emission costs varies from 24.813 to 48.020 CNY/kg;in addition,carbon-emission costs range from 0.61%to 3.4%of the total costs.The results also show that the levelized cost of hydrogen considering carbon-emission costs in the Shanghai municipality specifically is most sensitive to the carbon-emission price,changing by 0.131 CNY/kg for every 10%fluctuation in the carbon-emission price.展开更多
In a power grid system, utility is a measure of the satisfaction of users’ electricity consumption;cost is a monetary value of electricity generated by the supplier. The utility and cost functions represent the satis...In a power grid system, utility is a measure of the satisfaction of users’ electricity consumption;cost is a monetary value of electricity generated by the supplier. The utility and cost functions represent the satisfaction of different users and the supplier. Quadratic utility, logarithmic utility,and quadratic cost functions are widely used in social welfare maximization models of real-time pricing. These functions are not universal;they have to be discussed in detail for individual models. To overcome this problem, a piece-wise linear utility function and a piece-wise linear cost function with general properties are proposed in this paper. By smoothing the piece-wise linear utility and cost functions, a social welfare maximization model can be transformed into a differentiable convex optimization problem. A dual optimization method is used to solve the smoothed model. Through mathematical deduction and numerical simulations, the rationality of the model and the validity of the algorithm are verified as long as the elastic and cost coefficients take appropriate values. Thus, different user types and the supplier can be determined by selecting different elastic and cost coefficients.展开更多
In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the ...In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the energy storage is taken into consideration,then,the charge-discharge strategy for this equipment is determined.Here,Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)are used to calculate the minimum and maximum load in the network with the presence of energy storage systems.The energy storage systems were utilized in a distribution system with the aid of a peak load shaving approach.Ultimately,the battery charge-discharge is managed at any time during the day,considering the load consumption at each hour.The results depict that the load curve reached a constant state by managing charge-discharge with no significant changes.This shows the significance of such matters in terms of economy and technicality.展开更多
A new cost-based droop control method based upon generation cost and demand side cost management of the microgrid is proposed in this paper.At present,many droop control methods have been developed based on either the...A new cost-based droop control method based upon generation cost and demand side cost management of the microgrid is proposed in this paper.At present,many droop control methods have been developed based on either the power rating or the generation cost of the distributed generation(DG)unit,without consideration of the demand side participation in the operation and control.This exclusion might not be appropriate,if different types of consumers are connected in the micro-grid systems.This study proposes a droop control method considering both DG and load operating cost characteristics in order to minimize the generation cost of the micro-grid.展开更多
A mobile ad hoc network (MANET) is a kind of wireless ad hoc network. It is a self-configuring network of mobile routers connected by wireless links. Since MANETs do not have a fixed infrastructure, it is a chal-lenge...A mobile ad hoc network (MANET) is a kind of wireless ad hoc network. It is a self-configuring network of mobile routers connected by wireless links. Since MANETs do not have a fixed infrastructure, it is a chal-lenge to design a location management scheme that is both scalable and cost-efficient. In this paper, we propose a cooperative location management scheme, called CooLMS, for MANETs. CooLMS combines the strength of grid based location management and pointer forwarding strategy to achieve high scalability and low signaling cost. An indepth formal analysis of the location management cost of CooLMS is presented. In particular, the total location management cost of mobile nodes moving at variable velocity is estimated using the Gauss_Markov mobility model for the correlation of mobility velocities. Simulation results show CooLMS performs better than other schemes under certain circumstances.展开更多
The risks and challenges faced by human society at the moment are global warming, climate change and pollution. In addition to their effect on the atmosphere, the quantity of fossil fuels is beginning to decrease, and...The risks and challenges faced by human society at the moment are global warming, climate change and pollution. In addition to their effect on the atmosphere, the quantity of fossil fuels is beginning to decrease, and countries have taken steps to encourage greater use of renewable energy resources. This article explores the feasibility of supplying electricity from a hybrid power system (HPS) comprising wind/photovoltaic (PV) and batteries. Taking into account residential buildings that consume the largest portion of energy in Saudi grid<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> Saudi Arabia, Riyadh is the preferred city with distinctive geographical and climatic conditions. The hourly electricity demand data must be over 8760 hours during a 1-year analysis in order to assess the optimum design and operational planning of the HPS. The economic analysis is carried out by applying HOMER software on the basis of net present cost (NPC), energy cost (COE) and the renewable fraction for all situations. In addition, to specify the effect of fuel costs on the scheme, sensitivity tests are carried out by considering two separate tariff rates for residential consumers. The results of the economic analysis show that current tariff is not economic to </span><span style="font-family:Verdana;">use HSP under warm and temperate climate conditions compare to using</span><span style="font-family:Verdana;"> electricity from grid and the expected forecasted tariff shows it’s economic to use HSP compare to grid electricity.</span></span></span></span>展开更多
基金This work is a part of the Battery Characterisation and Management(BaChMan)project funded by the Engineering and Physical Sciences Research Council(EPSRC)in the UK and National Natural Science Foundation of China(NSFC)(grant reference:EP/L001004/1).
文摘The storage capacity of the batteries in an electric vehicle(EV)could be utilised to store electrical energy and give it back to the grid when needed by participating in vehicle to grid(V2G)schemes.This participation could be a source of revenue for vehicle owners thus reducing the total charging cost of their EVs.A V2G simulator has been developed using MATLAB to find out the potential cost saving from participation of EVs in V2G schemes.A standard IEEE30 network has been modelled in the simulator which uses the MATPOWER engine to undertake power flow analysis.A novel control algorithm has been developed to take advantage of the difference between the selling and buying electricity prices by charging and discharging EVs at the appropriate time.Two scenarios are simulated to compare the total charging cost of EVs with or without the utilisation of V2G technology within the power system assuming a total of 5000 EVs.The results of the simulation show that the applied control strategy with V2G is able to reduce the charging cost of EVs by 13.6%while satisfying the minimum requirement for state of charge(SoC)of the EV batteries to complete their next journey.
文摘The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.
基金supported by the National Key Research and Development Plan (2021YFB4000101)the Social Science Foundation of Beijing (22JCC092)+1 种基金the Fundamental Research Funds for the Central Universities (No.2021MS022,2021PT013)North China Electric Power University Interdisciplinary Innovation Special Project.
文摘Hydrogen energy contributes to China’s carbon peaking and carbon neutralization by serving as an important energy carrier.However,the calculation of the cost of hydrogen production by the power grid ignores the current cost of carbon emissions.To measure the cost of hydrogen-production projects in various provinces more comprehensively and accurately,this study incorporates the carbon-emission cost into the traditional levelized cost of hydrogen model.An analysis of the energy structure of the power supply is conducted in each province of China to calculate carbon-emission costs,which are then subjected to a sensitivity test.Based on the results,the carbon-emission costs for hydrogen in each province are between 0.198 and 1.307 CNY/kg,and the levelized cost of hydrogen based on carbon-emission costs varies from 24.813 to 48.020 CNY/kg;in addition,carbon-emission costs range from 0.61%to 3.4%of the total costs.The results also show that the levelized cost of hydrogen considering carbon-emission costs in the Shanghai municipality specifically is most sensitive to the carbon-emission price,changing by 0.131 CNY/kg for every 10%fluctuation in the carbon-emission price.
基金Supported by the Natural Science Foundation of China(11171221)
文摘In a power grid system, utility is a measure of the satisfaction of users’ electricity consumption;cost is a monetary value of electricity generated by the supplier. The utility and cost functions represent the satisfaction of different users and the supplier. Quadratic utility, logarithmic utility,and quadratic cost functions are widely used in social welfare maximization models of real-time pricing. These functions are not universal;they have to be discussed in detail for individual models. To overcome this problem, a piece-wise linear utility function and a piece-wise linear cost function with general properties are proposed in this paper. By smoothing the piece-wise linear utility and cost functions, a social welfare maximization model can be transformed into a differentiable convex optimization problem. A dual optimization method is used to solve the smoothed model. Through mathematical deduction and numerical simulations, the rationality of the model and the validity of the algorithm are verified as long as the elastic and cost coefficients take appropriate values. Thus, different user types and the supplier can be determined by selecting different elastic and cost coefficients.
基金supported in part by an International Research Partnership“Electrical Engineering-Thai French Research Center(EE-TFRC)”under the project framework of the Lorraine Universitéd’Excellence(LUE)in cooperation between Universitéde Lorraine and King Mongkut’s University of Technology North Bangkok and in part by the National Research Council of Thailand(NRCT)under Senior Research Scholar Program under Grant No.N42A640328.
文摘In this paper,the installation of energy storage systems(EES)and their role in grid peak load shaving in two echelons,their distribution and generation are investigated.First,the optimal placement and capacity of the energy storage is taken into consideration,then,the charge-discharge strategy for this equipment is determined.Here,Genetic Algorithm(GA)and Particle Swarm Optimization(PSO)are used to calculate the minimum and maximum load in the network with the presence of energy storage systems.The energy storage systems were utilized in a distribution system with the aid of a peak load shaving approach.Ultimately,the battery charge-discharge is managed at any time during the day,considering the load consumption at each hour.The results depict that the load curve reached a constant state by managing charge-discharge with no significant changes.This shows the significance of such matters in terms of economy and technicality.
文摘A new cost-based droop control method based upon generation cost and demand side cost management of the microgrid is proposed in this paper.At present,many droop control methods have been developed based on either the power rating or the generation cost of the distributed generation(DG)unit,without consideration of the demand side participation in the operation and control.This exclusion might not be appropriate,if different types of consumers are connected in the micro-grid systems.This study proposes a droop control method considering both DG and load operating cost characteristics in order to minimize the generation cost of the micro-grid.
文摘A mobile ad hoc network (MANET) is a kind of wireless ad hoc network. It is a self-configuring network of mobile routers connected by wireless links. Since MANETs do not have a fixed infrastructure, it is a chal-lenge to design a location management scheme that is both scalable and cost-efficient. In this paper, we propose a cooperative location management scheme, called CooLMS, for MANETs. CooLMS combines the strength of grid based location management and pointer forwarding strategy to achieve high scalability and low signaling cost. An indepth formal analysis of the location management cost of CooLMS is presented. In particular, the total location management cost of mobile nodes moving at variable velocity is estimated using the Gauss_Markov mobility model for the correlation of mobility velocities. Simulation results show CooLMS performs better than other schemes under certain circumstances.
文摘The risks and challenges faced by human society at the moment are global warming, climate change and pollution. In addition to their effect on the atmosphere, the quantity of fossil fuels is beginning to decrease, and countries have taken steps to encourage greater use of renewable energy resources. This article explores the feasibility of supplying electricity from a hybrid power system (HPS) comprising wind/photovoltaic (PV) and batteries. Taking into account residential buildings that consume the largest portion of energy in Saudi grid<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> Saudi Arabia, Riyadh is the preferred city with distinctive geographical and climatic conditions. The hourly electricity demand data must be over 8760 hours during a 1-year analysis in order to assess the optimum design and operational planning of the HPS. The economic analysis is carried out by applying HOMER software on the basis of net present cost (NPC), energy cost (COE) and the renewable fraction for all situations. In addition, to specify the effect of fuel costs on the scheme, sensitivity tests are carried out by considering two separate tariff rates for residential consumers. The results of the economic analysis show that current tariff is not economic to </span><span style="font-family:Verdana;">use HSP under warm and temperate climate conditions compare to using</span><span style="font-family:Verdana;"> electricity from grid and the expected forecasted tariff shows it’s economic to use HSP compare to grid electricity.</span></span></span></span>