It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountai...It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountain on the Southeastern Tibetan Plateau is an ideal place for plaeo-glacier study, because there are abundant Quaternary glacial remains there. This paper discusses the ages of the Quaternary glaciations, based on the exposure dating of roche moutonnée, moraines and gla- cial erosion surfaces using in situ cosmogenic isotopes 10Be. It is found that the exposure age of the roche moutonnée at Tuershan is 15 ka, corresponding to Stage 2 of the deep-sea oxygen isotope, suggesting that the roche moutonnée at Tuershan is formed in the last glacial maximum. The expo- sure age of glacial erosion surface at Laolinkou is 130―160 ka, corresponding to Stage 6 of the deep-sea oxygen isotope. The oldest end moraine at Kuzhaori may form at 421―766 kaBP, corre- sponding to Stages 12―18 of the deep-sea oxygen isotope. In accordance with the climate charac- teristic of stages 12,14,16 and 18 reflected by the deep-sea oxygen isotope, polar ice cores and loess sequence, the oldest end moraine at Kuzhaori may form at stage 12 or stage 16, the latter is more possible.展开更多
冰川漂砾的形成年代通常难以直接测定,并且漂砾形成以后是否被再次搬运或者移动过,更是无法知道。本文研究发现,通过测试砾石不同部位的宇生同位素,不仅可以测定砾石形成的时代,而且可以确定砾石再次被搬运或者被翻转的年代,从而恢复砾...冰川漂砾的形成年代通常难以直接测定,并且漂砾形成以后是否被再次搬运或者移动过,更是无法知道。本文研究发现,通过测试砾石不同部位的宇生同位素,不仅可以测定砾石形成的时代,而且可以确定砾石再次被搬运或者被翻转的年代,从而恢复砾石运动的历史。本文以石英中生成的宇生同位素^(10)Be,对青藏高原东南部海子山的冰川漂砾进行了探讨,结果表明该砾石形成于倒数第二次冰期(186~128 ka BP之间),在末次冰期中再次被冰川搬运,使之反转。该方法不局限于^(10)Be和冰川漂砾,也适用于其他陆面岩石中生成的宇生同位素以及其他成因的石块或者砾石。因此为探讨冰川作用、泥石流活动、重力崩塌等过程提供了一种重要的方法和技术途径。展开更多
A 36CI peak was found in the predicted section of Guliya ice core, from the Qinghai-Tibetan Plateau, at about 37 kaBP. This cannot be interpreted by means of changes in the accumulation rate, but by the enhanced cosmo...A 36CI peak was found in the predicted section of Guliya ice core, from the Qinghai-Tibetan Plateau, at about 37 kaBP. This cannot be interpreted by means of changes in the accumulation rate, but by the enhanced cosmogenic isotope production rate in the atmosphere. Compared with the records of 10Be and 36CI in the other regions, the peaks of the cosmogenic isotopes are global and can be considered as time marks. An intriguing fact is that the peaks coincided with cold periods.展开更多
基金This study was supported by the National Key Basic Research Development Planning Project(Grant No.2003CB415201)the National Natural Science Foundation of China(Grant No.40572097)the Foundation for the Excellent Young Teachers from the National Education Administration(Grant No.2001BC12).
文摘It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountain on the Southeastern Tibetan Plateau is an ideal place for plaeo-glacier study, because there are abundant Quaternary glacial remains there. This paper discusses the ages of the Quaternary glaciations, based on the exposure dating of roche moutonnée, moraines and gla- cial erosion surfaces using in situ cosmogenic isotopes 10Be. It is found that the exposure age of the roche moutonnée at Tuershan is 15 ka, corresponding to Stage 2 of the deep-sea oxygen isotope, suggesting that the roche moutonnée at Tuershan is formed in the last glacial maximum. The expo- sure age of glacial erosion surface at Laolinkou is 130―160 ka, corresponding to Stage 6 of the deep-sea oxygen isotope. The oldest end moraine at Kuzhaori may form at 421―766 kaBP, corre- sponding to Stages 12―18 of the deep-sea oxygen isotope. In accordance with the climate charac- teristic of stages 12,14,16 and 18 reflected by the deep-sea oxygen isotope, polar ice cores and loess sequence, the oldest end moraine at Kuzhaori may form at stage 12 or stage 16, the latter is more possible.
文摘冰川漂砾的形成年代通常难以直接测定,并且漂砾形成以后是否被再次搬运或者移动过,更是无法知道。本文研究发现,通过测试砾石不同部位的宇生同位素,不仅可以测定砾石形成的时代,而且可以确定砾石再次被搬运或者被翻转的年代,从而恢复砾石运动的历史。本文以石英中生成的宇生同位素^(10)Be,对青藏高原东南部海子山的冰川漂砾进行了探讨,结果表明该砾石形成于倒数第二次冰期(186~128 ka BP之间),在末次冰期中再次被冰川搬运,使之反转。该方法不局限于^(10)Be和冰川漂砾,也适用于其他陆面岩石中生成的宇生同位素以及其他成因的石块或者砾石。因此为探讨冰川作用、泥石流活动、重力崩塌等过程提供了一种重要的方法和技术途径。
文摘A 36CI peak was found in the predicted section of Guliya ice core, from the Qinghai-Tibetan Plateau, at about 37 kaBP. This cannot be interpreted by means of changes in the accumulation rate, but by the enhanced cosmogenic isotope production rate in the atmosphere. Compared with the records of 10Be and 36CI in the other regions, the peaks of the cosmogenic isotopes are global and can be considered as time marks. An intriguing fact is that the peaks coincided with cold periods.